共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, optimal sets of filter coefficients are searched by a meta-heuristic optimization technique called Harmony Search (HS) algorithm for infinite impulse response (IIR) system identification problem. For different optimization problems, HS algorithm undergoes three basic rules; namely Random Selection (RS), Harmony Memory Consideration (HMC), and Pitch Adjustment (PA) rules, which are inspired from the process that the musicians use to improvise a perfect state of harmony with the consummate skill of blending notes in tune. With the help of the properly selected control parameters, a perfect balance is achieved in exploration and exploitation in searching phases. The detailed analysis of simulation results emphasizes the strength of HS algorithm to find the near-global optimal solution, quality of convergence profile and the speed of convergence while tested against standard benchmark examples for same and reduced order models. 相似文献
2.
《Simulation Modelling Practice and Theory》2007,15(8):970-988
A recursive identification algorithm is used to identify mechatronic systems using impulse response data. The algorithm is based on an auto regressive moving average (ARMA) model with a steepest descent method to minimize the least square error between the original and predicted outputs. Two mechatronic systems are tested: DC motor and gyroscope. Impulse voltage input is used to excite the system and the angular speed output is measured. In both systems, the torque and angular velocity outputs are dependent on the voltage and current inputs. This relationship is governed by characteristics such as inductance, resistance, moment of inertia, friction, load, and system constants. Once the ARMA model is constructed, the transfer function is realized. Then the input voltage is varied and the identified model results are compared with the original system. Simulation results using Simulink and experimental results using Labview with data acquisition card (DAQ) are presented. Results show that the recursive identification algorithm is able to identify the two systems with minimal error. 相似文献
3.
In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (e p ), minimum stopband error (e s ), high stopband attenuation (A s ), and also free from limit cycle effect is proposed using cuckoo search (CS) algorithm. In the proposed method, error function, which is multi-model and non-differentiable in the heuristic surface, is constructed as the mean squared difference between the designed and desired response in frequency domain, and is optimized using CS algorithm. Computational efficiency of the proposed technique for exploration in search space is examined, and during exploration, stability of filter is maintained by considering lattice representation of the denominator polynomials, which requires less computational complexity as well as it improves the exploration ability in search space for designing higher filter taps. A comparative study of the proposed method with other algorithms is made, and the obtained results show that 90% reduction in errors is achieved using the proposed method. However, computational complexity in term of CPU time is increased as compared to other existing algorithms. 相似文献
4.
为解决IEEE 802.11n系统中的功率浪费现象,提出了一种先注水后调和平均值(first-water filling-last-harmonic, FWLH)的自适应混合优化功率分配算法。首先利用注水算法(water-filling algorithm)计算判别信道质量的阈值,对阈值以下的信道关闭不分配功率,对阈值以上的信道采用调和平均值算法(harmonic algorithm, HARM)进行功率分配。仿真表明,在误码率方面,FWLH算法比注水算法和HARM算法分别降低了大约100倍和20倍,使 相似文献
5.
针对标准学生心理优化算法(SPBO)的不足,分析了学生学习心理特征,提出采用混合策略的改进学生心理优化算法(HSSPBO)。首先,以学生考试总分的倒数值作为该学生的适应度值,以全班最好学生的适应度值为基准将全班学生分成最好学生、好学生、普通学生和尝试随机改进的学生四个类别;其次,利用正弦平方和余弦平方这一动态切换概率来平衡全局探索和局部开发,使算法全局探索能力和局部开发能力均得到有效提升;再次,引入柯西变异策略改变局部搜索步长,有效提升算法的局部搜索能力,增强算法跳出局部最优的能力;最后,引用Lévy飞行策略,使个体搜索步长更具随机性和灵活性,有效增强个体寻优能力,进而提升了算法的寻优速度。通过12个基准函数的仿真实验并与六个优化算法相比较,结果表明HSSPBO的全局搜索能力得到了明显的提升,在函数优化中具有更快的全局收敛速度、更好的优化精度和稳定性。 相似文献
6.
7.
8.
龚国斌 《计算机工程与应用》2013,49(9):50-53
提出一种混合粒子群优化算法用于求解约束优化问题。新算法的主要特点是:在搜索机制方面,利用混沌初始化种群以提高初始群体的质量。为了扩大粒子的搜索范围,引入柯西变异算子。利用单形交叉算子对种群进行局部搜索。在约束处理技术方面,根据当前种群中可行解比例自适应地选择不同的个体比较准则。数值实验结果表明了该算法的有效性。 相似文献
9.
针对粒子群优化算法在进化过程的后期收敛速度较慢,易陷入局部最优的缺点,对基本粒子群优化算法作了如下改进:在速度更新公式中引入非线性递减的惯性权重;改进位置更新公式;对全局极值进行自适应的变异操作。提出一种新的混合变异算子的自适应粒子群优化算法。通过与其他算法的数值实验对比,表明了该算法具有较快的收敛速度和较好的收敛精度。 相似文献
10.
针对传统无限脉冲响应(IIR)数字滤波器设计方法存在传输函数在整个设计阶段可能不是最优的问题,提出一种基于遗传算法结构进化的IIR数字滤波器生成方法.该方法直接设计滤波器结构,无需设计传输函数.首先,随机建立一组滤波器结构生成指令序列(SGIS).这些指令序列不仅能控制滤波器结构,也能表示滤波器结构.然后,对这些指令序列进行编码,将它们看作染色体; 最后用遗传算法优化这些染色体,得到最优滤波器.理论分析和实验仿真表明,与传统基于遗传算法系数进化的IIR滤波器方法相比,基于遗传算法结构进化的IIR滤波器通带波纹缩小40.58%,过渡带宽度缩小87.62%,阻带最小衰减减少9.22%. 相似文献
11.
12.
Tufan Kumbasar Ibrahim Eksin Mujde Guzelkaya Engin Yesil 《Expert systems with applications》2011,38(10):12356-12364
The use of inverse system model as a controller might be an efficient way in controlling non-linear systems. It is also a known fact that fuzzy logic modeling is a powerful tool in representing nonlinear systems. Therefore, inverse fuzzy model can be used as a controller for controlling nonlinear plants. In this context, firstly, a new fuzzy model based inverse controller design methodology is presented in this study. The design methodology introduced here is based on a recursive optimization procedure that searches for an optimal inverse model control signal at every sampling time. Since the task of optimization should be accomplished in between two sampling periods the use of a fast optimization algorithm becomes essential. For this reason, Big Bang-Big Crunch (BB-BC) optimization algorithm is used due to its low computational time and high global convergence properties. Even though, inverse model controllers may produce perfect control while operating in an open loop fashion, this open loop control would not be sufficient in the case of modeling mismatches or disturbances that might occur over the system. In order to overcome this problem, secondly, an on-line adaptation mechanism via BB-BC optimization algorithm is introduced in addition to BB-BC optimization based fuzzy model inverse controller. The adaptation mechanism is used to update the related parameters of the model while minimizing the absolute value of the instantaneous error between the system and model outputs. In this manner, the system output is somehow fed back, the overall control form can be considered as a closed-loop system. The new fuzzy model based inverse control scheme with the new online adaptation mechanism has been implemented and tested on the two real time processes; namely, heat transfer and pH processes and very satisfactory results has been reported. 相似文献
13.
《Expert systems with applications》2014,41(13):5917-5937
Although genetic algorithms (GAs) have proved their ability to provide answers to the limitations of more conventional methods, they are comparatively inefficient in terms of the time needed to reach a repeatable solution of desired quality. An inappropriate selection of driving parameters is frequently blamed by practitioners. The use of hybrid schemes is interesting but often limited as they are computationally expensive and versatile. This paper presents a novel hybrid genetic algorithm (HGA) for the design of digital filters. HGA combines a pure genetic process and a dedicated local approach in an innovative and efficient way. The pure genetic process embeds several mechanisms that interact to make the GA self-adaptive in the management of the balance between diversity and elitism during the genetic life. The local approach concerns convergence of the algorithm and is highly optimized so as to be tractable. Only some promising reference chromosomes are submitted to the local procedure through a specific selection process. They are more likely to converge towards different local optima. This selective procedure is fully automatic and avoids excessive computational time costs as only a few chromosomes are concerned. The hybridization and the mechanisms involved afford the GA great flexibility. It therefore avoids laborious manual tuning and improves the usability of GAs for the specific area of FIR filter design. Experiments performed with various types of filters highlight the recurrent contribution of hybridization in improving performance. The experiments also reveal the advantages of our proposal compared to more conventional filter design approaches and some reference GAs in this field of application. 相似文献
14.
针对阿奎拉优化算法(AO)存在的不足,提出一种采用混合搜索策略的阿奎拉优化算法(HAO)。首先,利用动态调整函数平衡算法的全局探索与局部开发;其次,利用混沌自适应权重来增强算法的全局搜索能力、加快算法的收敛速度;最后,设计新的个体变异概率系数,采用改进型差分变异策略,利用适应度值较优个体引领群体中其他个体开展搜索活动,保持了种群的多样性,增强了算法跳出局部最优的能力。通过八个基准测试函数和10个CEC2019测试函数,以及一个工程应用问题的数值实验仿真对所提算法进行实验验证。实验结果表明,所提算法的全局收敛速度和优化精度均得到了明显地改善,跳出局部最优的能力得到了增强。 相似文献
15.
Inclined planes system optimization (IPO) is a new optimization algorithm inspired by the sliding motion dynamic along a frictionless inclined surface. In this paper, with the aim of create a powerful trade-off between the concepts of exploitation and exploration, and rectify the complexity of their structural parameters in the standard IPO, a modified version of IPO (called MIPO) is introduced as an efficient optimization algorithm for digital infinite-impulse-response (IIR) filters model identification. The IIR model identification is a complex and practical challenging problem due to multimodal error surface entanglement that many researches have been reported for it. In this work, MIPO utilizes an appropriate mechanism based on the executive steps of algorithm with the constant damp factors. To do this, unknown filter parameters are considered as a vector to be optimized. In implementation, at first, to demonstrate the effectiveness of the proposed method, 10 well-known benchmark functions have been considered for evaluating and testing. In addition, statistical analysis on the powerfulness, efficiency and applicability of the MIPO algorithm are presented. Obtained results in compared to some other popular methods, confirm the efficiency of the MIPO algorithm that makes the best optimal solutions and has a better performance and acceptable solutions. 相似文献
16.
针对传统智能优化算法对混沌系统参数辨识精度低、速度慢的问题,提出一种基于反馈教学优化算法的混沌系统参数辨识的新方法.该方法以教学优化算法为基础,在教授-学习阶段之后加入反馈阶段,同时将参数辨识问题转化为参数空间上的函数优化问题.分别以三维二次自治广义Lorenz系统、Jerk系统和Sprott-J系统为待辨识模型,对粒子群优化算法、量子粒子群优化算法、教学优化算法及反馈教学优化算法进行了对比实验,反馈教学优化算法辨识误差为零,搜索次数明显减少.仿真结果表明,反馈教学优化算法明显提高了混沌系统参数辨识精度和速度,验证了该算法的可行性和有效性. 相似文献
17.
随着网络用户量的急剧增加,Web服务器被广泛应用于大型软件系统中,系统在运行前通常需要配置与性能相关的多个参数。人工配置参数的过程太繁琐且需要专业知识与经验,为了更便捷、更快速获取合理的系统配置参数,提出了一种基于混合二进制粒子群的Web系统优化算法。该算法加入了经验因子、爬山算法、线性递减惯性权重,对Web系统自动迭代寻找最优配置参数,解决了传统二进制粒子群算法寻优效率低、容易陷入局部最优解等问题。实验结果表明,该算法寻优效率高,能跳出局部最优解,可以获得效果更好的全局最优解。 相似文献
18.
We propose a new framework for hybrid system identification, which relies on continuous optimization. This framework is based on the minimization of a cost function that can be chosen as either the minimum or the product of loss functions. The former is inspired by traditional estimation methods, while the latter is inspired by recent algebraic and support vector regression approaches to hybrid system identification. In both cases, the identification problem is recast as a continuous optimization program involving only the real parameters of the model as variables, thus avoiding the use of discrete optimization. This program can be solved efficiently by using standard optimization methods even for very large data sets. In addition, the proposed framework easily incorporates robustness to different kinds of outliers through the choice of the loss function. 相似文献
19.
蝴蝶优化算法是近年来提出的一种新型自然启发式算法。针对基本蝴蝶优化算法收敛速度慢、求解精度低、稳定性差等问题,提出了一种融合变异策略的自适应蝴蝶优化算法。通过引入动态调整转换概率策略,利用迭代次数和个体适应度的变化信息动态调整转换概率,有效维持了算法全局探索与局部搜索的平衡;通过引入自适应惯性权重策略和局部变异策略,利用惯性权重值和混沌记忆权重因子进一步提高了算法的多样性,有效避免算法早熟收敛,同时加快了算法的收敛速度和求解精度。利用改进算法对12个基准测试函数进行仿真实验,与基本蝴蝶优化算法、粒子群算法、樽海鞘群算法、灰狼优化算法等其他算法对比表明,改进算法具有收敛速度快、寻优精度高、稳定性强等优异性能。 相似文献