首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A high molecular weight calmodulin binding protein (HMWCaMBP) was previously identified and purified from bovine heart cytosolic fraction [Sharma, R.K. (1990) J. Biol. Chem. 265, 1152-1157]. In this study, we report the biological function of this protein. HMWCaMBP was subjected to peptide mapping and three peptides were sequenced. Two of the three peptide sequences were shown to be highly homologous to the calpain inhibitor, calpastatin. However, the third peptide did not show homology to any known proteins. The Western blot analysis of HMWCaMBP and purified calpastatin from bovine cardiac muscle showed immunoreactivity with polyclonal antibody raised against HMWCaMBP. Furthermore, HMWCaMBP inhibited calpain II and calpain I activities in a dose dependent fashion. Our data based on sequence homology, amino acid analysis, antibody reactivity and calpain inhibition suggests that HMWCaMBP is homologous to calpastatin and may be a CaM-binding form of calpastatin.  相似文献   

2.
Dopamine D2 receptors are members of the G protein-coupled receptor superfamily and are expressed on both neurons and astrocytes. Using rat C6 glioma cells stably expressing the rat D2L receptor, we show here that dopamine (DA) can activate both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) pathways through a mechanism involving D2 receptor-G protein complexes and the Ras GTP-binding protein. Agonist binding to D2 receptors rapidly activated both kinases within 5 min, reached a maximum between 10 and 15 min, and then gradually decreased by 60 min. Maximal activation of both kinases occurred with 100 nM DA, which produced a ninefold enhancement of ERK activity and a threefold enhancement of JNK activity. DA-induced kinase activation was prevented by either (+)-butaclamol, a selective D2 receptor antagonist, or pertussis toxin, an uncoupler of G proteins from receptors, but not by (-)-butaclamol, the inactive isomer of (+)-butaclamol. Cotransfection of RasN17, a dominant negative Ras mutant, prevented DA-induced activation of both ERK and JNK. PD098059, a specific MEK1 inhibitor, also blocked ERK activation by DA. Transfection of SEK1 (K --> R) vector, a dominant negative SEK1 mutant, specifically prevented DA-induced JNK activation and subsequent c-Jun phosphorylation without effect on ERK activation. Furthermore, stimulation of D2 receptors promoted [3H]thymidine incorporation with a pattern similar to that for kinase activation. DA mitogenesis was tightly linked to Ras-dependent mitogen-activated protein kinase (MAPK) and JNK pathways. Transfection with RasN17 and application of PD098059 blocked DA-induced DNA synthesis. Transfection with Flag delta169, a dominant negative c-Jun mutant, also prevented stimulation of [3H]thymidine incorporation by DA. The demonstration of D2 receptor-stimulated MAPK pathways may help to understand dopaminergic physiological functions in the CNS.  相似文献   

3.
The striatum contains a high concentration of oxidizable dopamine (DA), and the aged organism shows a decreased ability to respond to oxidative stress (OS), making this area extremely vulnerable to free radical insult. To determine the receptor specificity of this putative increase in OS sensitivity, striatal slices from 6- and 24-month-old animals were incubated (30 min, 37 degrees C) in a modified Krebs medium containing 0 to 500 microM DA with or without a preincubation (15 min) in a nitrone trapping agent, 1 or 5 mM alpha-phenyl-n-tert-butyl nitrone (PBN), and changes in low Km GTPase activity (an index of receptor-G protein coupling/uncoupling) assessed in muscarinic, 5-HT1A D1, and D2 receptors stimulated with carbachol, 8 OH-DPAT-HBr, SKF 38393, or quinelorane, respectively. DA exposure induced selective decreases in the stimulated activity in all of these receptor systems, and an overall increase in conjugated dienes (56%) of the young. In the case of carbachol and 8 OH-DPAT-HBr, the DA-induced deficits in GTPase stimulation were seen primarily in the young (61 and 32%, respectively), while DA-induced deficits in quinelorane (D2) stimulation were seen in both age groups. In the case of SKF 38393-stimulation (D1) the DA-induced deficits were higher in the striatal tissue from the old. The DA-induced decreases in carbachol stimulated GTPase activity in the tissue from the young could be prevented by pretreatment with PBN or the DA uptake inhibitor, nomifensin. No effect of nomifensin was seen in the old, because their DA uptake mechanisms were already compromised. These results suggest that although age-related declines in DA uptake may provide some protection against the OS effects in muscarinic or 5-HT1A receptors, other factors may increase the vulnerability of DA neurons to OS, even with reductions in DA uptake.  相似文献   

4.
5.
We have investigated the mechanism by which activation of dopamine (DA) receptors regulates the glutamate sensitivity of medium spiny neurons of the nucleus accumbens. Our results demonstrate that DA regulates the phosphorylation state of the NR1 subunit of NMDA-type glutamate receptors. The effect of DA was mimicked by SKF82526, a D1-type DA receptor agonist, and by forskolin, an activator of cAMP-dependent protein kinase (PKA), and was blocked by H-89, a PKA inhibitor. These data indicate that DA increases NR1 phosphorylation through a PKA-dependent pathway. DA-induced phosphorylation of NR1 was blocked in mice bearing a targeted deletion of the gene for dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa (DARPP-32), a phosphoprotein that is a potent and selective inhibitor of protein phosphatase-1, indicating that the effect of PKA is mediated, in part, by regulation of the DARPP-32/protein phosphatase-1 cascade. In support of this interpretation, NR1 phosphorylation was increased by calyculin A, a protein phosphatase-1/2A inhibitor. A model is proposed in which the ability of DA to regulate NMDA receptor sensitivity is attributable to a synergistic action involving increased phosphorylation and decreased dephosphorylation of the NR1 subunit of the NMDA receptor.  相似文献   

6.
Recombinant human mu-calpain whose active site Cys-115 was substituted with Ser was expressed in insect cells using baculovirus system. The mutant mu-calpain, purified using an affinity-column of calpastatin oligopeptides, had no proteolytic activities of autolysis and caseinolysis. The large subunit of the mutant mu-calpain was processed from the 80 kDa form to the 76 kDa form by the wild type calpain, supporting the intermolecular cleavage mechanism of procalpain during activation. Fluorescence polarization analysis revealed that the mutant mu-calpain retained high affinity toward fluorescein-labeled calpastatin domain 1. Fragmentation of the full-length calpastatin by the wild type calpain was enhanced by pre-incubating the inhibitor with the mutant calpain. The recombinant mutant calpain was suggested to retain the integrity of the high ordered structure of the wild type calpain.  相似文献   

7.
Phosphinothricyl-alanyl-alanine (Pt tripeptide (Ptt), bialaphos) is a metabolite produced by Streptomyces viridochromogenes and Streptomyces hygroscopicus. It contains the unique phosphinoamino acid phosphinothricin (Pt), which after cleavage from Ptt is active as an inhibitor of glutamine synthetase. We have isolated three enzymes that assemble the building block of the Ptt peptide backbone in a nonribosomal mechanism. The first enzyme, named Ptt-synthetase I (PTTS I), activates N-acetyldemethylphosphinothricin (AcDMPt) as adenylate and thioester. Pt is not activated. PTTS I can also activate N-acetylphosphinothricin (AcPt) or N-acetylglutamate as structural analogues of AcDMPT. Native PTTS I has an estimated size of 62 kDa whereas the denatured form displays a size of 76 kDa. Immunoblot analysis and determination of its N-terminal protein sequence revealed that PTTS I is identical with the gene product of phsA. The phsA gene was previously identified near the Pt-resistance gene pat in the Ptt biosynthesis gene cluster in S. viridochromogenes. Besides PTTS I, two alanine-activating enzymes (PTTS II/III) were partially purified from S. viridochromogenes with estimated native sizes of ca. 120 kDa (enzyme 1) and ca. 140 kDa (enzyme 2). Both enzymes bind alanine as a thioester via the corresponding adenylate. Level of PTTS II/III and product formation were correlated with each other in several different strains of S. viridochromogenes. These results indicate that Ptt is synthesized by three peptide synthetases, each activating one single amino acid. The data also confirm previous genetic data, which suggest that AcDMPt-Ala-Ala is the precursor of Ptt.  相似文献   

8.
Dopamine (DA) and related catechols may contribute to selective degeneration of dopaminergic neurons in the substantia nigra in Parkinson's disease. To investigate whether DA induces apoptosis of dopaminergic neurons, we characterized the effects of various concentrations of exogenous DA on a substantia nigra/neuroblastoma hybrid cell line (MES 23.5 or MES). The hybrid MES cells were maintained in the presence of 50 microM glutamate in logarithmic growth on poly-D-lysine-precoated T-75 flasks and plated either onto petri dishes with glass coverslips for morphological studies or onto 6-well plates for quantification of apoptosis by flow cytometry. The results showed that DA exposure (0.5-20 microM) induced time- and dose-dependent apoptotic cell death of MES cells. To further analyze the mechanism responsible for DA-mediated apoptosis, we repeated the experiments at 20 microM DA in the presence or absence of 40 microM nomifensine, a DA re-uptake inhibitor, and 25 microM 2-amino-5-phosphonopentanoic acid (AP5), an N-methyl-D-aspartate (NMDA) receptor antagonist. The data indicate that both compounds significantly prevented DA-induced apoptosis of MES cells and that combination of AP5 and nomifensine provided greater protection against DA toxicity than AP5 alone. These results suggest for the first time that DA-induced apoptosis in dopaminergic neurons is partially attributable to increased vulnerability of these cells to non-toxic levels of excitatory amino acids, i.e., secondary excitotoxicity.  相似文献   

9.
We have previously demonstrated cleavage of alpha-spectrin by caspase-3 and calpain during apoptosis in SH-SY5Y neuroblastoma cells (Nath, R., Raser, K. J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R. V., Yuen, P., Gilbertsen, R. B., and Wang, K. K. (1996) Biochem. J. 319, 683-690). We demonstrate here that calcium/calmodulin-dependent protein kinase IV (CaMK IV) is cleaved during apoptosis by caspase-3 and calpain. We challenged SH-SY5Y cells with the pro-apoptotic agent thapsigargin. Western blot analysis revealed major CaMK IV breakdown products of 40, 38, and 33 kDa. Digestion of control SH-SY5Y lysate with purified caspase-3 produced a 38-kDa CaMK IV fragment; digestion with purified calpain produced a major fragment of 40 kDa. Pretreatment with carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene or Z-Val-Ala-Asp-fluoromethylketone was able to block the caspase-3-mediated production of the 38-kDa fragment both in situ and in vitro. Calpain inhibitor II similarly blocked formation of the calpain-mediated 40-kDa fragment both in situ and in vitro. Digestion of recombinant CaMK IV by other caspase family members revealed that only caspase-3 produces a fragmentation pattern consistent to that seen in situ. The major caspase-3 and calpain cleavage sites are respectively identified as PAPD176*A and CG201*A, both within the CaMK IV catalytic domain. Furthermore, calmodulin-stimulated protein kinase activity decreases within 6 h in thapsigargin-treated SH-SY5Y. The loss of activity precedes cell death.  相似文献   

10.
The molecular events involved in apoptosis induced by ionizing radiation remain unresolved. In this paper we show that the cleavage of fodrin to a 150 kDa fragment is an early proteolytic event in radiation-induced apoptosis in the Burkitts' Lymphoma cell line BL30A and requires 100 microM zVAD-fmk for inhibition. Caspases-1, -3, -6 and -7 were shown to cleave fodrin to the 150 kDa fragment in vitro and all were inhibited by 10 microM zVAD-fmk. We also show that the in vitro cleavage of fodrin by calpain is inhibited by 100 microM zVAD-fmk as was the calpain-mediated hydrolysis of casein. We demonstrate that calpain is activated within 15 min after radiation exposure, concomitant with the cleavage of fodrin to the 150 kDa fragment whereas caspase-3 is activated at 2 h correlating with the cleavage of fodrin to the 120 kDa fragment. These results support a role for calpain in the early phases of the radiation-induced apoptosis pathway, upstream of the caspases.  相似文献   

11.
Nitric oxide (NO) is produced by the enzyme nitric oxide synthase (NOS) and has been implicated in inter- and intracellular communication in the nervous system. The present study was undertaken to assess the effects of sodium nitroprusside (SNP) and hydroxylamine (HOA), NO donors, on a dopamine (DA)-induced K+ current in identified Aplysia neurons using voltage-clamp and pressure ejection techniques. Bath-applied SNP (10-25 microM) reduced the DA-induced K+ current without affecting the resting membrane conductance and holding current. The DA-induced K+ current also was inhibited by the focal application of 200 microM HOA to the neuron somata. The DA-induced K+ current suppressing effects of SNP and HOA are completely reversible. Pretreatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), a specific inhibitor of NO-stimulated guanylate cyclase, and hemoglobin (50 microM), a nitric oxide scavenger, decreased the SNP-induced inhibition of the DA-induced current. In contrast, intracellular injection of 1 mM guanosine 3',5'-cyclic monophosphate (cGMP) or bath-applied 3-isobutyl-1-methylxanthine (IBMX; 50 microM), a non-specific phosphodiesterase inhibitor, inhibited the DA-induced current, mimicking the effect of the NO donors. These results demonstrate that SNP and HOA inhibit the DA-induced K+ current and that the mechanism of NO inhibition of the DA-induced current involves cGMP-dependent protein kinase.  相似文献   

12.
Dopamine (DA) has been reported to depolarize neurons in the prefrontal cortex (PFC). To further characterize this effect of DA, we made whole cell recordings from PFC pyramidal cells in rat brain slices. As reported previously, DA depolarized most PFC cells tested. This effect of DA was concentration-dependent and persisted in the presence of synaptic blockade, indicating a direct effect of DA on the recorded cell. During DA-induced depolarization, PFC neurons consistently showed an increase in excitability, suggesting that the depolarization is not directly related to DA-induced inhibition of PFC neurons previously observed in vivo. Surprisingly, the effect of DA was not mimicked or blocked by several commonly used DA agonists and DA antagonists. The alpha and beta antagonists phentolamine and alprenolol and the atypical antipsychotic drug clozapine also showed no significant effect on DA-induced depolarization. These results suggest that DA-induced depolarization may be mediated by a nonspecific mechanism. However, it remains possible that there exists a new type of DA receptors in the PFC not sensitive to classical DA agonists and antagonists, particularly given the fact that DA applied in the same manner depolarized only PFC neurons but not those in the striatum or the substantia nigra.  相似文献   

13.
The capacity of a calpain inhibitor to reduce losses of neurofilament 200-, neurofilament 68- and calpain 1-mediated spectrin breakdown products was examined following traumatic brain injury in the rat. Twenty-four hours after unilateral cortical impact injury, western blot analyses detected neurofilament 200 losses of 65% (ipsilateral) and 36% (contralateral) of levels observed in naive, uninjured rat cortices. Neurofilament 68 protein levels decreased only in the ipsilateral cortex by 35% relative to naive protein levels. Calpain inhibitor 2, administered 10 min after injury via continuous arterial infusion into the right external carotid artery for 24 h, significantly reduced neurofilament 200 losses to 17% and 3% relative to naive neurofilament 200 protein levels in the ipsilateral and contralateral cortices, respectively. Calpain inhibitor administration abolished neurofilament 68 loss in the ipsilateral cortex and was accompanied by a reduction of putative calpain-mediated neurofilament 68 breakdown products. Spectrin breakdown products mediated by calpain 1 activation were detectable in both hemispheres 24 h after traumatic brain injury and were substantially reduced in animals treated with calpain inhibitor 2 both ipsilaterally and contralaterally to the site of injury. Qualitative immunofluorescence studies of neurofilament 200 and neurofilament 68 confirmed western blot data, demonstrating morphological protection of neuronal structure throughout cortical regions of the traumatically injured brain. Morphological protection included preservation of dendritic structure and reduction of axonal retraction balls. In addition, histopathological studies employing hematoxylin and eosin staining indicated reduced extent of contusion at the injury site. These data indicate that calpain inhibitors could represent a viable strategy for preserving the cytoskeletal structure of injured neurons after experimental traumatic brain injury in vivo.  相似文献   

14.
Urokinase-type plasminogen activator (uPA) activates plasminogen to plasmin, which is involved in the degradation of the vascular basement membrane and extracellular matrix. The present study was undertaken to examine the effects of several hemorrhagic metalloproteinases, jararafibrase (JF) I, II, III and IV, purified from Bothrops jararaca venom, on the single-chain zymogen form of uPA (scuPA). Activation of scuPA by JF I IV was estimated using a synthetic substrate for uPA (S-2444). Only JF I activated the scuPA in a time- and dose-dependent manner. SDS-PAGE analysis revealed that, after incubation with JF I, the intensity of the 55 kDa band of scuPA decreased concomitantly with increases in the intensity of the major two bands at 32 and 22 kDa under reduced and non-reduced conditions. The 32 kDa band demonstrated fibrinolytic activity in fibrin-zymographic studies. Amino-acid-sequence analysis revealed that JF I cleaved the position of 143Glu-144Leu in scuPA, indicating that JF I formed low molecular weight scuPA. From these results, it seems possible that activation of scuPA by JF I could be responsible in part for the local hemorrhage and tissue damage that are frequently observed in human victims of B. jararaca envenoming.  相似文献   

15.
In this study, the effects of oxidative stress on calpain-mediated proteolysis and calpain I autolysis in situ were examined. Calpain activity was stimulated in SH-SY5Y human neuroblastoma cells with the calcium ionophore, ionomycin. Calpain-mediated proteolysis of the membrane-permeable fluorescent substrate N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosine-7-amido-4-methylcouma rin, as well as the endogenous protein substrates microtubule-associated protein 2, tau and spectrin, was measured. Oxidative stress, induced by addition of either doxorubicin or 2-mercaptopyridine N-oxide, resulted in a significant decrease in the extent of ionophore-stimulated calpain activity of both the fluorescent compound and the endogenous substrates compared with control, normoxic conditions. Addition of glutathione ethyl ester, as well as other antioxidants, resulted in the retention/recovery of calpain activity, indicating that oxidation-induced calpain inactivation was preventable/reversible. The rate of autolytic conversion of the large subunit of calpain I from 80 to 78 to 76 kDa was decreased during oxidative stress; however, the extent of calpain autolysis was not altered. These data indicate that oxidative stress may reversibly inactivate calpain I in vivo.  相似文献   

16.
Cleavage of the calpain inhibitor, calpastatin, during apoptosis   总被引:1,自引:0,他引:1  
Calpain activity is thought to be essential for the execution of apoptotic cell death in certain experimental models. In the present study, the physiological inhibitor of calpain, calpastatin, was found to be cleaved in three different apoptotic systems. The 110-120 kDa calpastatin protein of Jurkat T-lymphocytes and U937 monocytic leukemia cells was cleaved to a 65-70 kDa form after the induction of apoptosis with anti-CD95 monoclonal antibody, staurosporine or TNF. Cleavage of calpastatin in apoptotic cells occurred simultaneously with the cleavage of the DNA repair enzyme, poly(ADP-ribose) polymerase. The caspase inhibitors VAD-cmk and IETD-fmk prevented calpastatin cleavage in all three systems. Calpain inhibitor I, however, suppressed calpastatin cleavage only during TNF-induced apoptosis. Other protease inhibitors, such as lactacystin and pepstatin A, did not confer any significant protection against apoptotic calpastatin cleavage. The results from in vitro incubations with cell lysates and purified enzymes showed that calpain I, calpain II and recombinant caspase-3, all cleaved calpastatin, with varying efficiency. In conclusion, the results of the present study suggest that caspases may cleave calpastatin and thus, regulate calpain activity during apoptotic cell death.  相似文献   

17.
Proteasomes interact with a variety of macromolecular ligands that modulate their ability to degrade peptide and protein substrates. The effector PA28 increases the peptidase activities of proteasomes whereas HSP90 and alpha-crystallin inhibit a peptide-hydrolyzing activity. Four monoclonal antibodies were used as probes to detect conformational changes of proteasome subunits. Conformational changes in alpha- or beta-subunits were found upon binding PA28, HSP90, alpha-crystallin, and the substrate casein but not with the peptide substrate analogs calpain inhibitor 1 (Ac-Leu-Leu-norleucinal), calpain inhibitor 2 (Ac-Leu-Leu-methioninal), or MG 132 (N-Cbz-Leu-Leu-leucinal).  相似文献   

18.
Proteolytic degradation of numerous calpain substrates, including cytoskeletal and regulatory proteins, has been observed during brain ischemia and reperfusion. In addition, calpain inhibitors have been shown to decrease degradation of these proteins and decrease postischemic neuronal death. Although these observations support the inference of a role for mu-calpain in the pathophysiology of ischemic neuronal injury, the evidence is indirect. A direct indicator of mu-calpain proteolytic activity is autolysis of its 80-kDa catalytic subunit, and therefore we examined the mu-calpain catalytic subunit for evidence of autolysis during cerebral ischemia. Rabbit brain homogenates obtained after 0, 5, 10, and 20 min of cardiac arrest were electrophoresed and immunoblotted with a monoclonal antibody specific to the mu-calpain catalytic subunit. In nonischemic brain homogenates the antibody identified an 80-kDa band, which migrated identically with purified mu-calpain, and faint 78- and 76-kDa bands, which represent autolyzed forms of the 80-kDa subunit. The average density of the 80-kDa band decreased by 25 +/- 4 (p = 0.008) and 28 +/- 9% (p = 0.004) after 10 and 20 min of cardiac arrest, respectively, whereas the average density of the 78-kDa band increased by 111 +/- 50% (p = 0.02) after 20 min of cardiac arrest. No significant change in the density of the 76-kDa band was detected. These results provide direct evidence for autolysis of brain mu-calpain during cerebral ischemia. Further work is needed to characterize the extent, duration, and localization of mu-calpain activity during brain ischemia and reperfusion as well as its role in the causal pathway of postischemic neuronal injury.  相似文献   

19.
We have examined the reversal of the regulatory effect of growth factors on calpain/calpastatin activity in transfected Schwann cells (tSc) after their subsequent withdrawal. Removal of nerve growth factor (NGF) or cyclic adenosine monophosphate (cAMP) from tSc resulted in a smaller loss of mu calpain (37%) and mcalpain (36.5 %) activity compared to treated cells from which the growth factors were not withdrawn. The mu calpain activity increased approximately 12% following withdrawal of acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) at 24 hr, while the increased mcalpain activity was more than 30-40% compared with that of cells that were continuously treated. The activity of both isoforms returned to their normal levels (untreated) at 48-72 hr following withdrawal of various growth factors, including NGF, cAMP, aFGF, bFGF, platelet-derived growth factor aa (PDGFaa), and PDGFbb. The inhibitory activity of calpastatin was greater than control following withdrawal of NGF, cAMP, PDGFaa, or PDGFbb at 24 hr and this inhibitory activity was less with treatment by aFGF and bFGF. The control activity was restored at 48 hr following withdrawal of these factors. The intensity of the cytoplasmic calpain immunoreactivity was significantly decreased in the nuclear and non-nuclear regions of the cytoplasm, respectively, following withdrawal of cAMP at 144 hr. Removal of bFGF from the medium resulted in an increase of cytoplasmic calpain immunoreactivity in the nuclear regions and cytoplasm, while there was dramatic loss of myelin calpain immunoreactivity from both the nuclear region and cytoplasm. The changes in calpain activity and immunoreactivity in tSc following withdrawal of growth factors suggest that release of calpain from membrane to cytosol may be regulated by these factors.  相似文献   

20.
Ceramide has been recently proposed to be a signal mediator in several important physiological processes including apoptosis, cellular growth, and differentiation. Because the microtubule-associated protein tau plays an important role in the establishment and maintenance of neuronal morphology, the effects of ceramide on tau were examined. Treatment of differentiated PC12 cells with the cell-permeable ceramide derivative N-acetylsphingosine (C2) resulted in a significant reduction in tau levels. Significant decreases in tau levels were also observed when the cells were treated with another ceramide derivative, N-hexanoylsphingosine (C6). In addition, C2 treatment increased the levels of a calpain-derived spectrin breakdown product but did not alter the levels of two cytoskeletal proteins, alpha-actin and alpha-tubulin. Because both tau and spectrin are proteolyzed in vitro by the calcium-activated cysteine protease calpain, the effects of ceramide analogues on the activity of this protease were examined. Treatment of PC12 cells with C2 enhanced calcium-stimulated proteolytic activity significantly, as revealed by monitoring the hydrolysis of the membrane-permeable calpain-selective fluorescence probe N-succinyl-L-leucyl-L-leucyl-L-valyl-L-tyrosine-7-amido-4-methylcoumarin . This activity increase was not due to a direct effect of C2 on calpains, because C2 did not alter the activities of purified calpain I or II. In addition, C2 treatment of PC12 cells resulted in a significant increase in the levels of calpain I and, to a lesser extent, the levels of calpastatin (an endogenous calpain inhibitor protein), whereas the levels of calpain II were not changed. Moreover, treatment of the cells with the synthetic calpain-specific inhibitor N-carbobenzoxy-L-leucyl-L-leucyl-L-tyrosine diazomethyl ketone blocked the C2-induced decreases in tau levels. These results indicate that tau levels are regulated in response to a physiological factor and, thus, have implications for ceramide-mediated changes in normal and pathological neuronal processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号