首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Si nanocrystals (Si-nc) embedded in a SiO2 layer have been characterized by means of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). For local Si concentration in excess  8 × 1021 Si+/cm3, the size of the Si-nc was found to be 3 nm and comparatively homogeneous throughout the whole implanted layer. For local Si concentration in excess of 2.4 × 1022 Si+/cm3, the Si-nc diameter ranges from 2 to 12 nm in the sample, the Si-nc in the middle region of the implanted layer being bigger than those near the surface and the bottom of the layer. Also, Si-nc are visible deeper than the implanted depth. Characterization by XPS shows that a large quantity of oxygen was depleted from the first 25 nm in this sample (also visible on TEM image) and most of the SiO2 bonds have been replaced by Si–O bonds. Experimental and simulation results suggest that a local Si concentration in excess of 3 × 1021 Si/cm3 is required for the production of Si-nc.  相似文献   

2.
A novel method for the fabrication of Si nanocrystals in an amorphous SiO2 matrix by ion implantation is reported. Transmission electron microscopy indicates the formation and growth of Si nanocrystals on annealing at 1100°C which were not observed before annealing. After annealing, a photoluminescence band around 1.7 eV is observed. The shape of the emission spectrum of the photoluminescence is found to be independent of annealing time, while the intensity of the luminescence increases and then decreases as the annealing time increases. We also show direct evidence of widening of the band-gap energy of a few nanometer-sized Si particles by employing photoacoustic spectroscopy. These results indicate that the photons are absorbed by Si nanocrystals, for which the band-gap energy is modified by the quantum confinement effects, and the emission is not simply due to direct electron-hole recombination inside Si nanocrystals but is related to defects probably at the interface between Si nanocrystals and SiO2.  相似文献   

3.
In the present work we have studied the photoluminescence (PL) behavior from Si nanocrystals (NCs) as a function of the excitation power density and annealing time. The NCs were produced in a SiO2 matrix by Si implantations from room temperature (RT) up to 700 °C, followed by post-annealing in N2 atmosphere at high temperature. With this aim we have changed the excitation power density (from 2 × 10−3 W/cm2 up to 15 W/cm2) and the annealing time (from 10 min up to 15 h). The strong PL signal, which at 15 W/cm2 is composed by a single-peak structure (650–1000 nm) centered at around 780 nm, expands up to 1200 nm showing a two-peak structure when measured at 20 × 10−3 W/cm2. The peak structure located at the short wavelength side is kept at 780 nm, while the second peak, starting at around 900 nm, redshifts and increases its intensity with the implantation temperature and annealing time. The effect of the annealing time on the PL spectra behavior measured at low excitation power agrees by the first time with the Si NC growth according to quantum confinement effects.  相似文献   

4.
Potentialities of rapid thermal annealing to enhance the photoluminescence emission of Si nanocrystals in SiO2 have been investigated. Ion implantation was used to synthesize specimens of SiO2 containing excess Si with different concentrations. Si precipitation to form nanocrystals in implanted samples takes place with a conventional furnace anneal. The photoluminescence intensity and the peak energy of emission from Si nanocrystals depend on implanted ion fluence. Moreover, the luminescence intensity is strongly enhanced with a rapid thermal anneal prior to a conventional furnace anneal. The luminescence intensity, however, decreases with a rapid thermal anneal following a conventional furnace anneal. It is found that the order of heat treatment is an important factor in intensities of the luminescence. Moreover, the luminescence peak energy is found to be dependent, but a little, on thermal history of specimens. Based on our experimental results, we discuss about the mechanism of an enhancement of the photoluminescence, together with the mechanism of photoemission from encapsulated Si nanocrystals produced in a SiO2 matrix by ion implantation and annealing.  相似文献   

5.
The blue region of the room temperature photoluminescence spectrum from Si nanocrystallites formed in SiO2 by Si+ ion implantation has been observed for the first time after annealing in a forming gas (10% H2 + 90% N2) ambient. Thermally grown SiO2 on Si substrates were implanted with a dose of 2 × 1017 Si+ cm−2 at energies of 200 keV and 400 keV. For reference purposes, quartz silica was implanted also with the same dose of 200 keV Si+ ions. The implanted samples were annealed in nitrogen and forming gas at 900°C for 3 to 180 min. Both the SiO2 and quartz samples exhibited luminescence at about 380 nm which was weak, but detectable, before annealing. During extended anneals in forming gas, the intensity increased by a factor of about 2 above that recorded after a nitrogen anneal but the peak position was unchanged. The intensity was greater in samples annealed in forming gas which is due to the additional hydrogen. It would seem that this blue luminescence originates from new luminescent centres in the matrix caused by the Si+ ion implantation.  相似文献   

6.
High dose 166Er or 160Gd implantations are used to form rare-earth (RE) silicides in Si. After implanting 0.8−2.0 × 1017 at./cm2 with 90 keV into Si(111) substrates kept at 450 to 530°C, we found that using conventional non-channeled implantation (tilted over 7°), it is impossible to form a continuous RESi1.7 layer. On the contrary, using channeled implantation, a continuous epitaxial ErSi1.7 layer with very good crystalline quality can be synthesized; a lowest χmin value of 1.5% for a surface ErSi1.7 layer is obtained. This different behaviour is explained using a model based on the difference in implantation depth, defect density and sputtering yield between random and channeled implantation, and the results are compared with Monte Carlo simulations. Such a high-quality RESi1.7/Si system offers a rare opportunity to study the structure, orientation and strain comprehensively using Rutherford backscattering and channeling spectrometry, X-ray diffraction and TEM. We found that the azimuthal orientation of the hexagonal RESi1.7 layer to the cubic Si substrate is RESi1.7[0001]/t|Si[111] and RESi1.7{11 0}/t|Si{110}. It is further observed that the ErSi1.7 epilayer is compre strained and quasi-pseudomorphic. In the case of GdSi1.7, the most difficult rare-earth silicide to form, and enhanced stabilization of the hexagonal over the orthorhombic phase is observed.  相似文献   

7.
Cu nanocrystals (NCs) were synthesized in SiO2 by ion implantation and thermal annealing. Annealing at two different temperatures of 950 °C and 650 °C yielded two different nanocrystal size distributions with an average diameter of 8.1 and 2.5 nm, respectively. Subsequently the NCs were exposed to 5.0 MeV Sn3+ ion irradiation simultaneously with a thin Cu film as a bulk reference. The short-range atomic structure and average NC diameter was measured by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and small angle X-ray scattering (SAXS), respectively. Consistent with the high regeneration rate of bulk elemental metals, no irradiation induced defects were observed for the reference, whereas the small NCs (2.5 nm) were dissolved as Cu monomers in the matrix. The latter was attributed to irradiation-induced mixing of Cu, Si and O based on dynamic binary collision simulations. For the large NCs (8.1 nm) only minor structural changes were observed upon irradiation, consistent with a more bulk-like pre-irradiation structure.  相似文献   

8.
The aim of this experiment was to explore the possibility to convert the Si-overlayer of a SIMOX wafer into 3C-SiC by carbon implantation. In a first attempt carbon was implanted at a temperature 1030°C and energy 100 keV to a dose of 2.5 × 1017 C+ cm−2. The SIMOX was covered by a thick thermal oxide. Cross-section TEM observations on the implanted specimen reveal that carbon is concentrated mainly at the Si/SiO2 interfaces at the front and back face of the Si-overlayer forming continuous but highly defected 3C-SiC layers which are in epitaxial relation with the Si matrix. The implanted carbon has the tendency to migrate from the SiO2 and Si to the SiO2/Si interfaces to form SiC there.  相似文献   

9.
在辐射伏特效应同位素电池(辐伏电池)中,器件的辐伏转化性能不仅受限于换能器件所用的半导体材料、结构或加载放射源的种类,还受换能器件表面钝化层结构的影响。为在氚化钛源加载的平面单晶硅PN结辐伏电池(氚辐伏电池)中得到最佳的钝化效果,本文设计了3种不同的钝化层结构,考察其初始输出性能和抗辐射性能,并单独研究了氚化钛源出射的X射线对单晶硅换能器件的辐射损伤。结果显示:在辐伏电池初始输出性能方面,Si/SiO2/Si3N4结构Si/B-Si glass/Si3N4结构Si/Si3N4结构;在抗氚化钛源辐射损伤方面,Si/Si3N4结构Si/B-Si glass/Si3N4结构Si/SiO2/Si3N4结构,Si/B-Si glass/Si3N4结构具有最佳的抗X射线辐射衰减性能。氚化钛源出射的X射线对辐射损伤效应起主要作用,XPS结果显示,X射线长时间辐照造成了单晶硅表面平整性的破坏。  相似文献   

10.
The occurrence of O2 molecular loss from the bulk of SiO2 single layers and SiO2/Si multilayers as a result of 50 MeV Cu9+ irradiation has been investigated. This process did not take place with a significant rate, if it occurs at all. Instead both Si and O are removed from the SiO2 surface region, releasing molecular O2. If an elemental Si layer is on top in a multilayer, removal of Si and O with an appreciable rate is not observed. The irradiation creates bubbles in the SiO2/Si multilayers, which contain O2. The distinct SiO2 sublayers remain chemically intact. The bubbles deteriorate the depth resolution in elastic recoil detection.  相似文献   

11.
Auger electron spectroscopy, low-energy electron loss spectroscopy and infrared spectroscopy are used to investigate the nitridation of thin (10–22 nm) thermal SiO2 in RF soft NH3 plasma. It is found that plasma action at a substrate temperature of 573 K can completely nitridate the thermal oxide to an oxynitride layer. The layers obtained are macroscopic mixtures of two phases SiO2 and Si3N4, rather than amorphous polymers of Si, O and N.  相似文献   

12.
We have investigated the effect of ion irradiation on the structure and morphology of Au nanocrystals (NCs) fabricated by ion beam synthesis in a thin SiO2 layer on a Si substrate. Extended X-ray absorption fine structure (EXAFS) spectroscopy measurements show a significant drop in the average Au–Au coordination, as well as a loss of medium and long range order with increasing irradiation dose. Small angle X-ray scattering (SAXS) measurements reveal a concomitant reduction in average NC size. These observations are a consequence of structural disorder and collisional mixing induced by the irradiation. The observed reduction in average Au–Au coordination by EXAFS differs significantly from that estimated from the average NC sizes evaluated using SAXS. This behavior can be explained by the dissolution of Au NCs into the SiO2 matrix. A significant bond-length contraction indicates that part of this material forms small Au clusters (dimers, trimers, etc.) during irradiation that cannot be detected by SAXS. Combining the results from SAXS and EXAFS measurements, we estimate the volume fraction of such clusters.  相似文献   

13.
We have performed high-dose Fe ion implantation into Si and characterized ion-beam-induced microstructures as well as annealing-induced ones using transmission electron microscopy (TEM) and grazing-incidence X-ray diffraction (GIXRD). Single crystals of Si(1 0 0) substrate were irradiated at 623 K with 120 keV Fe+ ions to a fluence of 4 × 1017 cm−2. The irradiated samples were then annealed in a vacuum furnace at temperatures ranging from 773 K to 1073 K. Cross-sectional TEM observations and GIXRD measurements revealed that a layered structure is formed in the as-implanted specimen with ε-FeSi, β-FeSi2 and damaged Si, as component layers. A continuous β-FeSi2 layer was formed on the topmost layer of the Si substrate after thermal annealing.  相似文献   

14.
Total sputtering yields have been measured for SiO2 and Cu targets bombarded with Si ions at an incident energy between 500 keV and 5.0 MeV using a quartz crystal microbalance technique. In order to measure total yields accurately, we have developed a beam modulation technique to avoid the effect of thermal drift. In the MeV energy range, an ion penetrates through thin SiO2 and Cu targets and is implanted into a quartz crystal. Therefore, the thickness of these layers deposited on quartz crystals was carefully controlled to avoid damage of quartz crystal by incident ions. As a result, total sputtering yields of SiO2 increased with incident Si ion energy, while those of the Cu target decreased. The total yields of the SiO2 target were represented well by a power low of the electronic stopping power.  相似文献   

15.
The structures formed after sequential implantation of silicon plus carbon in amorphous SiO2 and annealing presented strong photoluminescence bands in the deep red (1.4–1.6 eV) and green (2.0–2.2 eV) regions of the visible spectrum. The energy and intensity of the bands depended strongly on the temperature and duration of annealing. Different behaviours with post-processing were encountered for the red and green bands, including deexcitation kinetics and structural origin. The FTIR, Raman and HRTEM measurements showed that silicon crystallites were reponsible for the red emitting band while carbon aggregates were probably the origin of the green one.  相似文献   

16.
The emission spectra of lithium orthosilicates (Li4SiO4) ceramics have been measured in the range of 1.8–5.8 eV under irradiation by 6–30 eV photons or 1–30 keV electrons at 6–300 K. The tunnel recombination phosphorescence, as well as luminescence, stimulated by 1.5–2.5 eV photons has been detected in the sample preliminarily irradiated at 6 or 80 K. The main peaks of thermally stimulated luminescence (TSL) in the irradiated ceramics have been observed at 72, 118 and 265 K. The creation spectra of the 118 K TSL peak, as well as the excitation spectrum of photostimulated luminescence (PSL) span the region of the intrinsic absorption of a lithium orthosilicate (9–30 eV). The intensity of PSL and the TSL peaks in Li4SiO4 ceramics prepared in hydrogen/argon atmosphere is several times lower than that in the mainly investigated Li4SiO4 ceramics prepared in the atmosphere of dry argon. The optical characteristics of Li4SiO4 are compared with the ones known for Li2O and SiO2. Low-temperature luminescent methods are promising for the investigation of electron–hole processes and radiation defects serving as the traps for tritium released in D–T fusion reactor blanket systems.  相似文献   

17.
We study the atomic mixing at metal (Bi or Au)/oxide (SiO2 or Al2O3) interfaces under 150–200 MeV heavy ion irradiation. Irradiation-induced interface mixing state is examined by means of Rutherford backscattering spectrometry (RBS). For Bi/Al2O3 interfaces, the heavy ion irradiations induce a strong atomic mixing and the amount of the mixing increases with increasing the electronic stopping power for heavy ions. By comparing the results with that for 3 MeV Si ion irradiation, we conclude that the strong atomic mixing observed at Bi/Al2O3 interfaces is attributed to the high-density electronic excitation. On the other hand, for other interfaces (Bi/SiO2, Au/Al2O3 and Au/SiO2), atomic mixing is rarely observed after the irradiation. The dependence of atomic mixing on combinations of irradiating ions and interface-forming materials is discussed.  相似文献   

18.
In the surface analysis methods such as X-ray photoelectron spectroscopy, Auger electron spectroscopy, or secondary-ion mass spectroscopy, sputtering processes are used for depth profiling. However, ion beam bombardment changes the surface composition and the surface structure, which deteriorates the accuracy of the surface analysis and the depth resolution. We studied the preferential sputtering in some materials consisting of two components with different mass ratio by using the dynamic Monte Carlo simulation. Dose dependence of the depth profile of composition is presented. By Ar sputtering, the surface compositions of Au0.25Cu0.75, Au0.67Al0.33, and Ni0.5Cu0.5 alloys changed to Au0.28Cu0.72, Au0.76Al0.24, and Ni0.67Cu0.33, respectively. These results agreed with the experimental data. In order to compare the effect of mass ratio on the preferential sputtering, B–C, Si–C, and W–C systems were investigated. In B–C system, preferential sputtering by 1 and 3 keV Ar ion was negligible. In W–C system, a significant preferential sputtering occurred. In Si–C system, carbon was enriched in the outermost surface layer at a fluence lower than 3×1016 ions/cm2. At higher fluence, the partiality in concentration recovers because of the balance between the enrichment and the preferential sputtering.  相似文献   

19.
We have synthesized amorphous Fe–Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe+ ions to a fluence of 4.0 × 1017 cm−2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe–Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi2 thin layer.  相似文献   

20.
Advanced electron microscopy techniques have been employed to examine atomistic structures of ion-beam-induced amorphous silicon carbide (SiC). Single crystals of 4H-SiC were irradiated at a cryogenic temperature (120 K) with 300 keV Xe ions to a fluence of 1015 cm−2. A continuous amorphous layer formed on the topmost layer of the SiC substrate was characterized by energy-filtering transmission electron microscopy in combination with imaging plate techniques. Atomic pair-distribution functions obtained by a quantitative analysis of energy-filtered electron diffraction patterns revealed that amorphous SiC networks contain heteronuclear Si–C bonds, as well as homonuclear Si–Si and C–C bonds, within the first coordination shell. The effects of inelastically-scattered electrons on atomic pair-distribution functions were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号