首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper will present physical and tribological properties of diamond-like carbon (DLC) films deposited by plasma-enhanced chemical vapor deposition using a commercial RF high density plasma (HDP). The films have been prepared from acetylene or acetylene+hydrogen mixtures using a range of HDP conditions. The composition and optical properties of the DLC films have been characterized by forward recoil elastic scattering (FRES) and Fourier transform infrared spectroscopy (FTIR). The tribological properties have been measured in ambient air and in dry nitrogen using a pin-on-flat tribometer. While the friction coefficients in air (<0.14) were mostly independent of the deposition conditions, the friction in dry nitrogen was affected by the deposition conditions, reaching values as low as 0.01. The wear rates of the HDP DLC films were extremely low. This paper will discuss the friction properties of these films in relation to the deposition conditions and their physical properties.  相似文献   

2.
《Diamond and Related Materials》2001,10(9-10):1862-1867
Diamond-like carbon (DLC) films were deposited on silicon using methane and acetylene plasma induced by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-MPCVD). The mechanical properties of DLC films were characterized by micro-Raman system, atomic force microscope, tribometer, nano-indenter used for both hardness and nano-scratch test measurements. The mechanical properties of both DLC films, prepared in methane and acetylene plasmas, respectively, strongly depended on the kinetic energy of impinging particles. The deposition at −120 V substrate bias gave rise to DLC films with the best mechanical properties for both methane and acetylene plasmas. The hardness measurements with variable indentation depth showed the characteristic changes in hardness values implying elastic deformations of supporting substrates. The maximum hardness value of DLCM films was 20 GPa while that of DLCA films was 28 GPa. However, the hardness dropped when DLC films were prepared at substrate biases more negative than −120 V due to the thermal graphitization. The improvement in DLC properties usually provided the films with smaller hydrogen content and higher density of sp3 bondings. These parameters were engineered through controlling the deposition parameters. Particularly, the bombardment of growing DLC films by energetic ions showed to be extremely important to yield films with lower internal stress.  相似文献   

3.
Diamond-like carbon (DLC) films prepared using CH4 or C6H6 with varying deposition parameters by an electron beam excited plasma CVD system were investigated for the internal stress, dynamic hardness and structural properties such as the film density, total, bonded and unbound hydrogen contents, sp3 ratio and graphite crystallite. From the correlations between internal stress and structural properties, the following conclusions were derived. The fraction of unbound hydrogen to total hydrogen content was the most influential factor for the compressive stress of the DLC films deposited from CH4. It is suggested that unbound hydrogen may be trapped into the disordered microstructure of graphite crystallites embedded in the network of film. For the DLC films deposited from C6H6, it was shown that the compressive stress was correlated with not only the fraction of unbound hydrogen content but also the degree of cross-linking between graphite crystallites in the film.  相似文献   

4.
X-Ray reflectivity is used to determine the electron density profiles normal to the surface of diamond-like carbon (DLC) films prepared by plasma-enhanced chemical vapor deposition (PE-CVD). Average values of the scattering lengths obtained from the specular reflection data and elastic recoil detection analysis (ERDA) hydrogen measurements are used to calculate the average mass density of the films. The density is shown to be strongly dependent on the hydrogen content. This depends on the plasma parameters. Argon diluted methane plasma produces homogeneous DLC films but generally with a lower density than the films prepared from pure or He diluted plasmas. These later plasmas produce films with a high density contrast and higher densities.  相似文献   

5.
The properties of diamond-like carbon (DLC) films are influenced by both the process parameters and the properties of the substrate on which they are deposited. Deposition of DLC films on aluminium and its alloys has drawn increasing attention owing to its potential applications as wear resistant coatings in automobile pistons, bores, VCR heads, copier machine drums and textile components. In the present study, DLC films have been deposited on commercial pure aluminium (98.9% purity) in a 200 kHz RF glow discharge sustained by methane gas in an asymmetric and capacitively coupled deposition system. Influence of various process parameters such as power density or bias voltage, methane gas pressure and flow rate on deposition kinetics, hardness and elastic modulus of the films has been assessed. Interrelationships between independent process variables like power density, methane gas pressure and flow rate, and dependent process variables like bias voltage and temperature have also been evaluated on the basis of available models.  相似文献   

6.
Coating of DLC film by pulsed discharge plasma CVD   总被引:1,自引:0,他引:1  
Diamond-like carbon (DLC) films were deposited onto Ti plate substrate by means of pulsed discharge (PD) plasma chemical vapor deposition (CVD) from gas mixture of methane and hydrogen, and their structures were investigated with transmission electron microscope (TEM). When the polarity of the substrate was negative, the DLC film was grown on the substrate. The transmission electron diffraction (TED) pattern of the deposited film, which was shaved with knife from the surface of the substrate, showed that both TiC and diamond structures were formed, showing that the DLC film can be coated with good adhesion by means of the formation of TiC interlayer. The coatings of DLC films onto a stainless steel plate and a drill of WC, on which Ti film were deposited previously, was also succeeded by the PD plasma CVD method with good adhesion.  相似文献   

7.
Nitrogen incorporated diamond like carbon films have been deposited by microwave surface wave plasma chemical vapor deposition (MW-SWP-CVD), using methane (CH4) as the source of carbon and with different nitrogen flow rates (N2 / CH4 flow ratios between 0 and 3). The influence of the nitrogen incorporation on the optical, structural properties and surface morphology of the carbon films were investigated using different spectroscopic techniques. The nitrogen has been incorporated into DLC:N films which was confirmed by the X-ray photoelectron spectroscopy (XPS) measurement. Moreover, the nitrogen incorporation was accompanied by a variation in the optical gap, which was attributed to the removal or creation of band tail states.  相似文献   

8.
Hydrogenated amorphous carbon (a-C:H) films are deposited from methane–argon and acetylene–argon gas mixtures in a microwave electron cyclotron resonance plasma reactor. The films deposited with the two different gas mixtures under similar input parameter conditions have substantially different properties, including deposition rate, mass density, optical absorption coefficient, refractive index, optical bandgap and hydrogen content. The deposition parameters varied include rf-induced dc substrate bias voltage (0 to −60 V), pressure (1–5 mTorr) and argon/hydrocarbon gas flow ratio (0–1.0). The discharge properties of the two different gas mixtures, including electron temperature, ion saturation current, and residual gas composition of the exit gas flow, are measured to help explain the different deposition results from the two different gas mixtures. The use of lower pressures is found to be critical for obtaining denser, lower hydrogen content films from acetylene. For the methane-deposited films the addition of argon to the discharge increased the film's mass density and lowered the hydrogen content. In both methane- and acetylene-based deposition processes the rf-induced bias is also a critical determining factor of film properties.  相似文献   

9.
几种年轻煤在氮热等离子体中的热解   总被引:13,自引:3,他引:10       下载免费PDF全文
研究了几种中国年轻煤在氮电弧热等离子体中的热解行为,考察了煤的基本性质、煤的粒度及加煤速率等条件对煤热解特性的影响.结果发现,煤在氮等离子体条件下热解所得气体产物中的主要成分是氢、乙炔、一氧化碳和丙炔腈,此外还有甲烷和乙烯等小分子烃.乙炔的收率随煤种的不同和操作条件的变化而波动.煤中的挥发分含量愈高、加煤速率愈低,乙炔收率则愈高.其中扎赉诺尔褐煤的乙炔收率最高可达22.3%(以煤中碳为基准);原料煤在氮等离子体中热解后,除部分芳香C—C键得以保留外,煤有机结构中的外围官能团全部消失,同时在热解半焦中有新的氮基官能团(如—C(?)N)引入.  相似文献   

10.
Diamond-like carbon (DLC) and nitrogenated DLC (a-C:N) films were prepared on Si and glass substrates using an electron cyclotron resonance-assisted microwave plasma chemical vapour deposition (ECR-MPCVD) system with radio frequency substrate bias. The hardness and optical bandgap of the resulting films were investigated and correlated to the elemental and phase composition. The a-C:N films, deposited under conditions identical to those for the DLC films except for the introduction of a nitrogen flow, contain nitrogen which partly substitutes for hydrogen and forms carbon–nitrogen triple bonds. These bonds obstruct the formation of carbon–carbon cross-linking, resulting in softer films. These changes can be interpreted with reference to various changes of active vibronic states determined by Raman spectroscopy.  相似文献   

11.
Hydrogenated carbon films and hydrogenated carbon films containing nitrogen have been synthesized by direct ion beam deposition (IBD) using cyclohexane and methane as precursors and by plasma-assisted chemical vapour deposition (PACVD) using cyclohexane and acetylene as precursors. The elemental composition has been assessed by gas chromatography. The films' structure has been analysed by FTIR, Raman, NEXAFS spectroscopy and X-ray reflectivity. The hardness has been determined by nanoindentation and microhardness measurements, and the stress by optical profilometry.FTIR measurements reveal an increasing nitrile and amine group absorption with a corresponding decrease of C–H stretching modes as the nitrogen concentration in the film increases. The nitrogen-containing functional groups are proposed to be at peripheral positions of graphitic domains. The corresponding reduction of the domain size is detected in the Raman data, and the increase of delocalized bonding in a-CH(:N) films with respect to a-CH films is confirmed by the NEXAFS results. In the carbon K-edge spectra, the intensity of the π* CC resonance at ≃285.3 eV has been found to increase as a function of N content. This indicates principally an increment of the sp2 hybridization. Such a structural change leads to a decrease in the hardness and the internal compressive stress with respect to a-CH films. In a film containing 15 at% N, the hardness is reduced to 44% and the stress to 36% of that for a-CH.  相似文献   

12.
In this paper, we report results concerning properties of diamond-like carbon (DLC) thin films obtained in different experimental conditions: various RF power values and different precursors (methane, acetone and toluene or in combination with nitrogen). The deposition rate of DLC thin films obtained from precursors with low ionizing energy and high number of carbon atoms in molecule as acetone and toluene was higher (142 nm/min for acetone and 607 nm/min for toluene as compared with 79 nm/min for methane at 400 W input power). The highest value of hardness was obtained from methane (18 GPa). In the case of acetone and toluene precursors, the hardness increased with input power to the highest values of 16.8 and 14.8 GPa. By utilizing nitrogen as doping element, the resistivity of DLC thin films obtained from methane and acetone decreased from values higher than 107 Ω cm to lower values of 12.5×103 Ω cm for 3.79% nitrogen atomic concentration in the case of films obtained from methane and 40×103 Ω cm for 4.26% nitrogen atomic concentration in the case of films obtained from acetone.  相似文献   

13.
In this work diamond-like carbon films were deposited on the Ti–6Al–4V alloy, which has been used in aeronautics and biomedical fields, by electrical discharges using a magnetron cathode and a 99.999% graphite target in two different atmospheres, the first one constituted by argon and hydrogen and the second one by argon and methane. Films deposited using the argon/hydrogen mixture were called a-C:H, while films deposited using the argon/methane mixture were called DLC. Raman spectroscopy was used to study the structure of the films. The Raman spectra profile of the a-C:H films is quite different from that of the DLC films. The disorder degree of the graphite crystalline phase in a-C:H films is higher than in DLC films (a-C:H films present small values for the the ID/IG ratio). Potentiodynamic corrosion tests in 0.5 mol l−1 NaCl aqueous solution, pH 5.8, at room temperature (≈25 °C) were carried out as for the a-C:H as for the DLC coated surfaces. Comparison between the corrosion parameters of a-C:H and DLC coated surfaces under similar deposition time, showed that DLC coated surfaces present bigger corrosion potential (Ecorr) and polarization resistance than those coated with a-C:H films. Electrochemical impedance spectroscopy (EIS) was also used to study the electrochemical behavior of a-C:H and DLC coated surfaces exposed to 0.5 mol l−1 aqueous solution. The EIS results were simulated with equivalent electrical circuit models for porous films. The results of these simulations showed similar tendency to the one observed in the potentiodynamic corrosion tests. The DLC film resistance and the charge transfer resistance (Rct) for the DLC coated surface/electrolyte interface were bigger than the ones determined for the a-C:H coated surfaces.  相似文献   

14.
The multi-layered structure of thin diamond-like carbon (DLC) films was investigated by X-ray reflectivity (XRR) analysis. Thin DLC films were deposited on Si substrate by RF plasma chemical vapor deposition (CVD) from acetylene source gas with short duration of plasma operation from 0.08 to 4.99 s. It was confirmed from XRR analysis that the thin DLC film on Si substrate had 3 layers consisting of a subsurface layer on the grown surface, a mixing layer at the interface to Si substrate, and a bulk-DLC layer sandwiched between the 2 layers. The 3 layers had been formed in 0.08 s at beginning of deposition with distinctive bulk-DLC layer of 1.7 nm thick already appeared due to extremely higher deposition rate only at the initial stage of CVD. The thickness of bulk-DLC layer increased with increasing CVD duration while both the mixing layer of higher density and the sub-surface layer of extremely low density continuously existed. By oxygen plasma etching, it was confirmed by XRR analysis that the sub-surface layer was clearly removed and another layer of lower density than the bulk DLC appeared.  相似文献   

15.
Diamond like carbon (DLC) thin films were deposited on p-type silicon (p-Si), quartz and ITO substrates by microwave (MW) surface-wave plasma (SWP) chemical vapor deposition (CVD) at different substrate temperatures (RT ∼ 300 °C). Argon (Ar: 200 sccm) was used as carrier gas while acetylene (C2H2: 20 sccm) and nitrogen (N: 5 sccm) were used as plasma source. Analytical methods such as X-ray photoelectron spectroscopy (XPS), FT-IR and UV–visible spectroscopy were employed to investigate the structural and optical properties of the DLC thin films respectively. FT-IR spectra show the structural modification of the DLC thin films with substrate temperatures showing the distinct peak around 3350 cm 1 wave number; which may corresponds to the sp2 C–H bond. Tauc optical gap and film thickness both decreased with increasing substrate temperature. The peaks of XPS core level C 1 s spectra of the DLC thin films shifted towards lower binding energy with substrate temperature. We also got the small photoconductivity action of the film deposited at 300 °C on ITO substrate.  相似文献   

16.
The non-thrombogenicity of oxygen-plasma-treated DLC films was investigated as surface coatings for medical devices. DLC films were deposited on polycarbonate substrates by a radio frequency plasma enhanced chemical vapor deposition method using acetylene gas. The deposited DLC films were then treated with plasma of oxygen gas at powers of 15 W, 50 W, and 200 W. Wettability was evaluated by water contact angle measurements and the changes in surface chemistry and roughness were examined by X-ray photoelectron spectroscopy and atomic force microscope analysis, respectively. Each oxygen-plasma-treated DLC film exhibited a hydrophilic nature with water contact angles of 11.1°, 17.7° and 36.8°. The non-thrombogenicity of the samples was evaluated through the incubation with platelet-rich plasma isolated from human whole blood. Non-thrombogenic properties dramatically improved for both 15 W- and 50 W-oxygen-plasma-treated DLC films. These results demonstrate that the oxygen plasma treatment at lower powers promotes the non-thrombogenicity of DLC films with highly hydrophilic surfaces.  相似文献   

17.
Films of diamond-like carbon containing up to 22 at.% silicon (DLC-Si) were deposited on to silicon substrates by low-frequency pulsed DC plasma activated chemical vapor deposition (PACVD). The influence of silicon doping on deposition rate, composition, bonding structure, hardness, stress, surface roughness and biocompatibility was investigated and correlated with silicon content. A mixture of methane and tetramethylsilane (TMS) was used for the deposition of DLC-Si films at a pressure of 200 Pa. The deposition rate increased with increasing TMS flow. The addition of silicon into the DLC film leads to an increase of sp3 bonding, as measured by Raman spectroscopy, and also resulted in lower stress and hardness values. The RMS surface roughness of the films was measured by atomic force microscopy and increased from 0.35 nm for DLC to 6.7 nm for DLC-Si (14 at.% Si) due to the surface etching by the H atoms. Biocompatibility tests were performed using MG-63 osteoblast-like cell cultures that were left to grow for 3 days and their proliferations were assessed by scanning electron microscopy. The results indicated a homogeneous and optimal tissue integration for both the DLC and the DLC-Si surfaces. This pulsed PACVD technique has been shown to produce biocompatible DLC and DLC-Si coating with potential for large area applications.  相似文献   

18.
Diamond-like hydrogenated carbon films have been formed at low temperatures using methane and acetylene as precursor gases. The source used was of a cascaded arc type employing Ar and Ar/H2 as carrier gases. Energies of ion species and ion densities in the plasma were measured with a mass energy probe and a Langmuir probe.The films produced were characterized in terms of sp3 content, refractive index, relative hydrogen content, hardness and adhesion. The variation of these parameters is presented as functions of precursor gas flow, process pressure, and surface temperature.Deposition rates up to 30 nm/s have been achieved using acetylene as precursor gas at substrate temperatures below 100 °C. Experiments with acetylene showed deposition rates seven times greater than with methane. The typical sp3 content of 55–78% in the films was determined by X-ray-Excited Auger Electron Spectroscopy (XAES) technique. The hardness and reduced modulus were determined by nanoindentation. Preliminary Atomic Force Microscopy (AFM) studies of the films showed a roughness below 3 nm (Ra).  相似文献   

19.
In this study, molecular dynamics simulations using the Brenner potential for hydrocarbons have been used to simulate the formation of diamond-like carbon (DLC) films grown from low-energy hydrocarbon radicals (<2 eV). With these simulations, insight is gained in the processes occurring in this type of deposition. The initial surface is a previously deposited DLC surface; impinging particles include Ar+ ions, with an energy of 2 eV, as well as several carbon radicals and molecules, and hydrogen atoms, with an energy of 1 eV. Two different radical flux compositions were examined: in the first condition, only C, C2, and CH were used as growth species, as well as a large flux of H atoms. In the second condition, the same carbon radicals were considered, as well as the C2H radical and C2H2, C4H2, and C6H2 molecules, but without the H atom flux. These fluxes are similar to different experimental conditions in an expanding thermal Ar/C2H2 plasma (expanding thermal plasma, or ETP), using different influxes of acetylene. Several properties of the resulting films will be presented, focusing mainly on the carbon coordination and the bonding network. The simulations suggest that lowering the acetylene influx results in films having a more extensive bonding network, but with more H incorporated. This leads to more polymeric films having a less diamond-like character, as is expected also from experiments. The aim of this work is twofold. The first objective is to compare the structural composition of the simulated films to the structure of the experimentally deposited films by applying similar conditions. Second, the simulations can give us valuable information about the key mechanisms in the deposition process.  相似文献   

20.
J. Bullerwell  T.K. Whidden 《Fuel》2010,89(1):254-5992
Hydrogen-enriched natural gas (HENG) containing a mixture of acetylene, hydrogen, and methane is produced from natural gas feedstock in our plasma dissociation process. Storage of this HENG fuel at pressures up to 4000 psig is required for rapid vehicle refueling. Little information on the stability of acetylene mixtures at elevated pressures is presently available; therefore we have performed stability testing on gas mixtures that simulate our HENG fuel. This report describes the stability testing of binary gas mixtures of acetylene and methane containing up to 10%(v) acetylene, and a ternary gas mixture of 4%(v) acetylene, 20%(v) hydrogen, and 76%(v) methane, at pressures up to 3600 psig and temperatures up to 200 °C. The mixtures tested were found to be stable to rapid spontaneous decomposition at all test conditions; however, some degree of hydrogenation of acetylene to ethylene may have occurred in an intermediate mixture of acetylene and hydrogen while preparing the highest pressure ternary test mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号