首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this work, the synthesis and characterization of three-dimensional hetergeneous graphene nanostructures (HGN) comprising continuous large-area graphene layers and ZnO nanostructures, fabricated via chemical vapor deposition, are reported. Characterization of large-area HGN demonstrates that it consists of 1-5 layers of graphene, and exhibits high optical transmittance and enhanced electrical conductivity. Electron microscopy investigation of the three-dimensional heterostructures shows that the morphology of ZnO nanostructures is highly dependent on the growth temperature. It is observed that ordered crystalline ZnO nanostructures are preferably grown along the <0001> direction. Ultraviolet spectroscopy and photoluminescence spectroscopy indicates that the CVD-grown HGN layers has excellent optical properties. A combination of electrical and optical properties of graphene and ZnO building blocks in ZnO-based HGN provides unique characteristics for opportunities in future optoelectronic devices.  相似文献   

2.
3.
We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.  相似文献   

4.
Kim YJ  Hadiyawarman  Yoon A  Kim M  Yi GC  Liu C 《Nanotechnology》2011,22(24):245603
This study describes the hydrothermal growth of ZnO nanostructures on few-layer graphene sheets and their optical and structural properties. The ZnO nanostructures were grown on graphene sheets of a few layers thick (few-layer graphene) without a seed layer. By changing the hydrothermal growth parameters, including temperature, reagent concentration and pH value of the solution, we readily controlled the dimensions, density and morphology of the ZnO nanostructures. More importantly, single-crystalline ZnO nanostructures grew directly on graphene, as determined by transmission electron microscopy. In addition, from the photoluminescence and cathodoluminescence spectra, strong near-band-edge emission was observed without any deep-level emission, indicating that the ZnO nanostructures grown on few-layer graphene were of high optical quality.  相似文献   

5.
Yazyev OV 《Nano letters》2008,8(4):1011-1015
Hyperfine interactions, magnetic interactions between the spins of electrons and nuclei, in graphene and related carbon nanostructures are studied. By using a combination of accurate first principles calculations on graphene fragments and statistical analysis, I show that both isotropic and dipolar hyperfine interactions in sp2 carbon nanostructures can be accurately described in terms of the local electron spin distribution and atomic structure. A complete set of parameters describing the hyperfine interactions of 13C and other nuclear spins at substitution impurities and edge terminations is determined. These results permit the design of graphene-based nanostructures allowing for longer electron spin coherence times which are required by spintronics and quantum information processing applications. Practical recipes for minimizing hyperfine interactions in carbon nanostructures are given.  相似文献   

6.
In order to harvest the many promising properties of graphene in (electronic) applications, a technique is required to cut, shape, or sculpt the material on the nanoscale without inducing damage to its atomic structure, as this drastically influences the electronic properties of the nanostructure. Here, we reveal a temperature-dependent self-repair mechanism that allows near-damage-free atomic-scale sculpting of graphene using a focused electron beam. We demonstrate that by sculpting at temperatures above 600 °C, an intrinsic self-repair mechanism keeps the graphene in a single-crystalline state during cutting, even though the electron beam induces considerable damage. Self-repair is mediated by mobile carbon ad-atoms that constantly repair the defects caused by the electron beam. Our technique allows reproducible fabrication and simultaneous imaging of single-crystalline free-standing nanoribbons, nanotubes, nanopores, and single carbon chains.  相似文献   

7.
8.
Wu Y  Perebeinos V  Lin YM  Low T  Xia F  Avouris P 《Nano letters》2012,12(3):1417-1423
The superior intrinsic properties of graphene have been a key research focus for the past few years. However, external components, such as metallic contacts, serve not only as essential probing elements, but also give rise to an effective electron cavity, which can form the basis for new quantum devices. In previous studies, quantum interference effects were demonstrated in graphene heterojunctions formed by a top gate. Here phase coherent transport behavior is demonstrated in a simple two terminal graphene structure with clearly resolved Fabry-Perot oscillations in sub-100 nm devices. By aggressively scaling the channel length down to 50 nm, we study the evolution of the graphene transistor from the channel-dominated diffusive regime to the contact-dominated ballistic regime. Key issues such as the current asymmetry, the question of Fermi level pinning by the contacts, the graphene screening determining the heterojunction barrier width, the scaling of minimum conductivity, and of the on/off current ratio are investigated.  相似文献   

9.
In this study, we introduce a novel method to produce large area interconnected graphene nanostructures. A single layer CVD (Chemical Vapor Deposition) grown graphene was nanostructured by employing dewetted Ni thin film as an etching mask for the underlying graphene. As a result, a network of graphene nanostructures with irregular shapes and widths down to 10 nm is obtained. The FET (field effect transistor) devices fabricated employing the nanostructured graphene as channel material exhibit increased on/off current ratio compared to pristine graphene indicating a slight band gap opening due to the quantum confinement effect in such narrow graphene nanostructures. This technique can be useful for the large scale fabrication of graphene based electronic devices such as FETs and sensors.  相似文献   

10.
We report direct imaging of nanoscale thermal transport in single and few-layer graphene with approximately 50 nm lateral resolution using high vacuum scanning thermal microscopy. We observed increased heat transport in suspended graphene where heat is conducted by ballistic phonons, compared to adjacent areas of supported graphene, and observed decreasing thermal conductance of supported graphene with increased layer number. Our nanothermal images suggest a mean-free-path of thermal phonons in supported graphene below 100 nm.  相似文献   

11.
Park WI  Yoon JM  Park M  Lee J  Kim SK  Jeong JW  Kim K  Jeong HY  Jeon S  No KS  Lee JY  Jung YS 《Nano letters》2012,12(3):1235-1240
We report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by a block copolymer self-assembly process. Optimized surface functionalization provides stacking structures of Si-containing block copolymer thin films to generate uniform memristor device structures. Both the silicon oxide film and nanodot memristors, which were formed by the plasma oxidation of the self-assembled block copolymer thin films, presented unipolar switching behaviors with appropriate set and reset voltages for resistive memory applications. This approach offers a very convenient pathway to fabricate ultrahigh-density resistive memory devices without relying on high-cost lithography and pattern-transfer processes.  相似文献   

12.
Wang QH  Hersam MC 《Nano letters》2011,11(2):589-593
Nanoscale control of surface chemistry holds promise for tailoring the electronic, optical, and chemical properties of graphene. Toward this end, the nanofabrication of sub-5-nm heteromolecular organic nanostructures is demonstrated on epitaxial graphene using room temperature ultrahigh vacuum scanning tunneling microscopy. In particular, monolayers of the organic semiconductor 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) are nanopatterned on epitaxial graphene using feedback-controlled lithography (FCL) and then used as chemical resists to template the deposition of N,N'-dioctyl-3,4,9,10-perylene-tetracarboxylic diimide (PTCDI-C8). The generality of this FCL-based nanofabrication procedure suggests its applicability to a wide range of fundamental studies and prototype device fabrication on chemically functionalized graphene.  相似文献   

13.
14.
MF Chisholm  G Duscher  W Windl 《Nano letters》2012,12(9):4651-4655
We have found that reactive elements that are normally oxidized at room temperature are present as individual atoms or clusters on and in graphene. Oxygen is present in these samples but it is only detected in the thicker amorphous carbon layers present in the graphene specimens we have examined. However, we have seen no evidence that oxygen reacts with the impurity atoms and small clusters of these normally reactive elements when they are incorporated in the graphene layers. First principles calculations suggest that the oxidation resistance is due to kinetic effects such as preferential bonding of oxygen to nonincorporated atoms and H passivation. The observed oxidation resistance of reactive atoms in graphene may allow the use of these incorporated metals in catalytic applications. It also opens the possibility of designing and producing electronic, opto-electronic, and magnetic devices based on these normally reactive atoms.  相似文献   

15.
We investigate current saturation at short channel lengths in graphene field-effect transistors (GFETs). Saturation is necessary to achieve low-output conductance required for device power gain. Dual-channel pulsed current-voltage measurements are performed to eliminate the significant effects of trapped charge in the gate dielectric, a problem common to all oxide-based dielectric films on graphene. With pulsed measurements, graphene transistors with channel lengths as small as 130 nm achieve output conductance as low as 0.3 mS/μm in saturation. The transconductance of the devices is independent of channel length, consistent with a velocity saturation model of high-field transport. Saturation velocities have a density dependence consistent with diffusive transport limited by optical phonon emission.  相似文献   

16.
Cryogenic current comparators (CCCs) are being used at NIST to verify Hamon-type resistance scaling techniques from 1 to 100 Ω, 1 kΩ, 6453.20 Ω, and 10 kΩ. Measurements comparing the 10/1, 64.532/1, and 100/1 ratios of CCCs to that of Hamon transfer ratios agree to ≈0.01 ppm, the practical limit of accuracy using Hamon transfer standards with conventional resistance bridges. The higher ration accuracies and sensitivities of CCC bridges will make it possible to lower the uncertainties associated with resistance scaling at NIST significantly  相似文献   

17.
Edge effect in fluid jet polishing   总被引:1,自引:0,他引:1  
Guo P  Fang H  Yu J 《Applied optics》2006,45(26):6729-6735
The edge effect is one of the most important subjects in optical manufacturing. The removal function at different positions of the sample in the process of fluid jet polishing (FJP) is investigated in the experiments. Furthermore, by using finite-element analysis (FEA), the distributions for velocity and pressure of slurry jets are simulated. Experimental results demonstrate that the removal function has a ring-shaped profile, except for a little change in the size at the operated area even if the nozzle extends beyond the edge of the sample. FEA simulations reveal a similar distribution of velocity with a cavity resulting in the ring-shaped profile of material removal at different impact positions. To a certain extent, therefore, the removal function at the edge of the surface of the sample appears similar to that inside of it, so that the classical edge effect can be neglected in FJP.  相似文献   

18.
The scaling effect (power law dependence of number of newly-formed damages on damage size) during fracturing is inherent in heterogeneous materials, such as composites, concrete, rocks, etc., in which multi-site damaging takes place. Fracturing brittle homogeneous materials do not exhibit this phenomenon due to the lack of pre-failure damage accumulation at the microscopic scale level. This work is to determine the role of structural heterogeneity in the process of primary defect nucleation occurring in conventional homogeneous materials. We present highly resolved time series of fractoluminescence (FL) emitted during multiple chemical bond breakage in shock-damaged silica glass and single crystals $\upalpha \hbox {-SiO}_{2}$ and $\upalpha \hbox {-SiC}$ . The statistical analysis of the time series has shown that the energy distributions of FL pulses followed the power law indicative of long-range interactions between primary damage events. This scaling phenomenon is caused by the multiplicity of newly formed damaged sites at the level of structural heterogeneity. At the same time, the microscopic and larger damage formation reflected in the acoustic emission time series did not exhibit the presence of long-range interactions between growing brittle cracks.  相似文献   

19.
Jain PK  El-Sayed MA 《Nano letters》2007,7(9):2854-2858
It has been recently shown that the strength of plasmon coupling between a pair of plasmonic metal nanoparticles falls as a function of the interparticle gap scaled by the particle size with a near-exponential decay trend that is universally independent of nanoparticle size, shape, metal type, or medium dielectric constant. In this letter, we extend this universal scaling behavior to the dielectric core-metal shell nanostructure. By using extended Mie theory simulations of silica core-metal nanoshells, we show that when the shift of the nanoshell plasmon resonance wavelength scaled by the solid nanosphere resonance wavelength is plotted against the shell thickness scaled by the core radius, nanoshells with different dimensions (radii) exhibit the same near-exponential decay. Thus, the nanoshell system becomes physically analogous to the particle-pair system, i.e., the nanoshell plasmon resonance results from the coupling of the inner shell surface (cavity) and the outer shell surface (sphere) plasmons over a separation distance essentially given by the metal shell thickness, which is consistent with the plasmon hybridization model of Prodan, Halas, and Nordlander. By using the universal scaling behavior in the nanoshell system, we propose a simple expression for predicting the dipolar plasmon resonance of a silica-gold nanoshell of given dimensions.  相似文献   

20.
A linker-free reduced graphene oxide (R-GO)-CdSe nanoparticle (CdSe NP) hybrid nanostructure was synthesized using a chemical vapor deposition method. CdSe NPs were selectively deposited on the surface of R-GO with controlled NP size and coverage. The distribution and morphology of CdSe NPs on R-GO were characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The resulting hybrid nanostructure exhibited photoresponse to both laser and simulated sunlight AM 1.5G excitation. The hybrid structure with low CdSe NP coverage showed distinct photoresponse times in air, N(2), NH(3), and NO(2), while high CdSe NP coverage led to nearly constant but three orders of magnitude smaller response time in all gases. Such a difference in photoresponse as a function of NP coverage is attributed to the energy band bending at the interface between the R-GO and the CdSe NP. The selective deposition of CdSe NPs on R-GO and the understanding of the subsequent photoinduced charge transfer can potentially lead to high-performance optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号