共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
本文介绍了用于遥控机器人作业虚拟环境生成的建模方法,重点研究了基于人机交互的双目立体视觉和多视点建模方法,以克服视觉自动建模方法计算复杂、鲁棒性差的缺点,给出了环境建模的实验系统和实验结果。 相似文献
3.
提出一种三维复杂环境下移动机器人的环境建模与分析方法。通过平滑滤波得到环境地形高度变化的轮廓基本特征,以一阶微分方法分析满足移动机器人运行的平坦性,建立投影平面上的可行区域图。应用改进的近似Voronoi边界网络构造方法得到可行区域的网络化结构模型。该方法能够以较少的网络节点反映移动机器人运行环境中可行区域的网络化结构,从而降低路径规划的计算复杂度。该模型方法体现了三维环境的地形轮廓特征,因此能够有助于导航中的规划与定位问题的解决。 相似文献
4.
实时全局地图构建是实现移动机器人智能化的关键;研究了一种基于全向视觉的移动机器人全局地图的实时构建方法.首先介绍了全向视觉的体系结构,然后对图像处理软件的相关模块,包括基于颜色的阈值分割、区域连通、特征提取和目标识别等进行了说明,最后通过坐标的转换实现全局地图的构建;实验结果表明,由于充分利用了全向视觉的特性,构建的全局地图准确性高、实时性好,完全能够满足移动机器人对环境建模的需要. 相似文献
5.
6.
基于视觉注意力模型的显著性提取 总被引:1,自引:0,他引:1
对现有基于注意力机制的静态显著计算和动态显著计算技术进行综述.它主要包括两部分:静态图像的显著性提取和动态图像的显著性提取.静态显著计算首先介绍了Itti和Stentiford静态显著性提取模型,然后分析了基础分割的注意力模型技术.动态显著性提取中的两个动静结合的注意力模型、强注意力偏向融合和基于运动优先的注意力模型.介绍了一些视觉注意力模型,并对其进行了讨论.探讨了各种模型的优缺点及应用.为视觉注意力模型在图像检索、人机交互、视频监控等领域提供了一定的基础. 相似文献
7.
针对移动机器人视觉伺服跟踪控制问题, 提出一种基于自适应动态规划(Adaptive dynamic programming, ADP) 的控制方法. 通过移动机器人上的相机拍摄共面特征点的当前图像、期望图像以及参考图像, 利用单应性技术得到移动机器人当前的位姿信息与期望的位姿信息(即平移量与旋转角度), 从而通过当前与期望的平移旋转之间差值得到系统的开环误差模型. 进而, 针对此系统设计最优控制器, 同时做合适的控制输入变换. 在此基础上设计一个基于ADP的视觉伺服控制方法以保证移动机器人完成轨迹跟踪任务. 为求出最优控制输入, 采用一个评价神经网络近似值函数, 通过不断学习逼近哈密顿−雅可比−贝尔曼(Hamilton-Jacobi-Bellman, HJB)方程的解. 与以往不同的是, 由于系统存在时变项, 导致HJB方程也含有时变项, 因此需要设计具有时变权值结构的神经网络近似值函数. 最终证明在所设计的控制方法作用下, 闭环系统是一致最终有界的. 相似文献
8.
具有自主的全局定位能力是自主式稳定机器人传感器系统的一项重要功能,为了实现这个目的,国内外均在不断地研究发展各种定位传感器系统,这里介绍了一种采用光学蝗全方位位置传感器系统,该传感器系统由主动式路标、视觉传感器、图象采集与数据处理系统组成,其视觉传感器和数据处理系统可安装在移动机器人上,然后可通过观测路标物「视角定位的方法,计算出机器人在世界坐标系中的位置和方向,实验证明,该系统可以只的在线定位, 相似文献
9.
基于激光扫描的移动机器人3D室外环境实时建模 总被引:1,自引:0,他引:1
针对室外非结构化3D环境,研究了基于激光扫描的移动机器人实时地形建模问题.考虑了建模过程中可能存在的多源不确定性误差,将其建模为零均值高斯噪声,由此建立多级坐标变换矩阵将激光扫描数据转化为全局坐标系中的概率化高程估计,并根据置信区间将得到的高程估计关联至多个地形网格,在此基础上对关联网格内分配的高程估计进行概率融合,实现了局部高程地图的更新.此外,采用局部窗口检测方法对地形遮挡问题进行了处理,并同时解决了室外环境下移动机器人的3D定位问题.实验结果表明了该算法的实时性和有效性. 相似文献
10.
环境建模技术是移动机器人自主导航研究中的一个关键问题。本文给出一种基于多传感器信息融合的环境建模方法。实验结果表明该方法有效地克服了传感器的累计误差,有效地提高了环境建模的准确性。此方法的可行性和有效性通过Pioneer3-DX移动机器人得到了实验验证。 相似文献
11.
12.
13.
The trajectory tracking control problem of dynamic nonholonomic wheeled mobile robots is considered via visual servoing feedback. A kinematic controller is firstly presented for the kinematic model, and then, an adaptive sliding mode controller is designed for the uncertain dynamic model in the presence of parametric uncertainties associated with the camera system. The proposed controller is robust not only to structured uncertainties such as mass variation but also to unstructured one such as disturbances. The asymptotic convergence of tracking errors to equilibrium point is rigorously proved by the Lyapunov method. Simulation results are provided to illustrate the performance of the control law. 相似文献
14.
The trajectory tracking control problem of dynamic nonholonomic wheeled mobile robots is considered via visual servoing feedback.A kinematic controller is firstly presented for the kinematic model,and ... 相似文献
15.
Dongkai Zhang Guoliang Wei Hengjun Zhang Hua Chen 《International journal of systems science》2014,45(7):1451-1460
The stabilising problem of stochastic non-holonomic mobile robots with uncertain parameters based on visual servoing is addressed in this paper. The model of non-holonomic mobile robots based on visual servoing is extended to the stochastic case, where their forward velocity and angular velocity are both subject to some stochastic disturbances. Based on backstepping technique, state-feedback stabilising controllers are designed for stochastic non-holonomic mobile robots. A switching control strategy for the original system is presented. The proposed controllers guarantee that the closed-loop system is asymptotically stabilised at the zero equilibrium point in probability. 相似文献
16.
从视觉角度来说,视觉显著性图像是指主体突出的图像,比起内容散乱的图像,此类图像往往更能吸引用户的关注,也更符合用户对图片检索的使用需求。提出了一种图像主体视觉显著性判断方法,采用“中心围绕”计算原则在多特征融合的基础上应用支持向量机训练,建立了一个分类模型,并且可以给出表征图像显著程度的得分。实验表明,该模型有较高的分类正确率,并且将该模型应用于图像检索重排序、图像上传自动审核等应用时,可以得到更接近人工操作的结果,降低人力资源成本。 相似文献
17.
Naoki Akai 《野外机器人技术杂志》2023,40(3):595-613
Reliability is a key factor for realizing safety guarantee of fully autonomous robot systems. In this paper, we focus on reliability in mobile robot localization. Monte Carlo localization (MCL) is widely used for mobile robot localization. However, it is still difficult to guarantee its safety because there are no methods determining reliability for MCL estimate. This paper presents a novel localization framework that enables robust localization, reliability estimation, and quick relocalization, simultaneously. The presented method can be implemented using a similar estimation manner to that of MCL. The method can increase localization robustness to environment changes by estimating known and unknown obstacles while performing localization; however, localization failure of course occurs by unanticipated errors. The method also includes a reliability estimation function that enables a robot to know whether localization has failed. Additionally, the method can seamlessly integrate a global localization method via importance sampling. Consequently, quick relocalization from a failure state can be realized while mitigating noisy influence of global localization. We conduct three types of experiments using wheeled mobile robots equipped with a two-dimensional LiDAR. Results show that reliable MCL that performs robust localization, self-failure detection, and quick failure recovery can be realized. 相似文献
18.
This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study. 相似文献