首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics and heat transfer characteristics of flow boiling bubble train moving in a micro channel is studied numerically. The coupled level set and volume of fluid (CLSVOF) is utilized to track interface and a non-equilibrium phase change model is applied to calculate the interface temperature as well as heat flux jump. The working fluid is R134a and the wall material is aluminum. The fluid enters the channel with a constant mass flux (335 kg/m2 1 s), and the boundary wall is heated with constant heat flux (14 kW/m2). The growth of bubbles and the transition of flow regime are compared to an experimental visualization. Moreover, the bubble evaporation rate and wall heat transfer coefficient have been examined, respectively. Local heat transfer is significantly enhanced by evaporation occurring vicinity of interface of the bubbles. The local wall temperature is found to be dependent on the thickness of the liquid film between the bubble train and the wall.  相似文献   

2.
NucleatePoolBoilingofPureLiquidsandBinaryMixtures:PartII-AnalyticalModelforBoilingHeatTransferofBinaryMixturesonSmoothTubesan...  相似文献   

3.
NucleatePoolBoilingofPureLiquidsandBinaryMixtures:PartI-AnalyticalModelforBoilingHeatTransferofPureLiquidsonSmoothTubesGuoqin...  相似文献   

4.
A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtures. A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes. Using the general model and the bubble growth model for pure liquids, an analytical model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.  相似文献   

5.
A combined physical model of bubble growth is proposed along with a corresponding bubble growth model for binary mixtures on smooth tubes. Using the general model of Wang et al.[1] and the bubble growth model for binary mixtures, an analytical model for nucleate pool boiling heat transfer of binary mixtures on smooth tubes is developed. In addition, nucleate pool boiling heat transfer of pure liquids and binary mixtures on a horizontal smooth tube was studied experimentally. The pure liquids and binary mixtures included water, methanol, ethanol, and their binary mixtures. The analytical models for both pure liquids and binary mixtures are in good agreement with the experimental data.  相似文献   

6.
The interfacial heat transfer coefficient is an important parameter for the analysis of multi-phase flow. In subcooled boiling flow, bubbles condense through the interface of phases and the interfacial heat transfer determines the condensation rate which affects the two-phase parameters such as void fraction and local liquid temperature. Thus, the present experiments are conducted to correlate the interfacial heat transfer coefficient at low pressure in the subcooled boiling flow. The local liquid temperature is measured by microthermocouple and the bubble condensation rate is estimated by orthogonal, two-image processing. The condensate Nusselt number, which is a function of bubble Reynolds number, local liquid Prandtl number, and local Jacob number, is obtained from the experimental results. The bubble history is derived from the newly proposed correlation and the condensate Nusselt number is compared with the previous models.  相似文献   

7.
Experiments are conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. From the measured boiling curves, the temperature undershoot at ONB is found to be relatively significant for the subcooled flow boiling of R-134a in the duct. The R-134a subcooled flow boiling heat transfer coefficient increases with a reduction in the gap size, but decreases with an increase in the inlet liquid subcooling. Besides, raising the imposed heat flux can cause a substantial increase in the subcooled boiling heat transfer coefficient. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are small in the narrow duct. Visualization of the subcooled flow boiling processes reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Moreover, raising the imposed heat flux significantly increases the bubble population, coalescence and departure frequency. The increase in the bubble departure frequency by reducing the duct size is due to the rising wall shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities on the heating surface tend to merge together to form big bubbles. Correlation for the present subcooled flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

8.
Yuying Yan  Yingqing Zu 《传热工程》2013,34(13-14):1182-1190
This paper reports the results of numerical study on bubbles deformation, flow, and coalescence under pseudo-nucleate boiling conditions in horizontal mini-/microchannels. The numerical simulation, which is based on the multiphase model of volume of fluid method, aims to study the corresponding flow behaviors of nucleate bubbles generated from the tube walls in mini-/microchannels so as to understand the effect of confined surfaces/walls on nucleate bubbles and heat transfer. Under the pseudo- or quasi-nucleate boiling condition, superheated small vapor bubbles are injected at the wall to ensure that the bubbles generation is under a similar condition of real nucleation. The numerical study examined the fluid mechanics of bubble motion with heat transfer, but the mass transfer across the bubble–liquid interface is not simulated in the present work.  相似文献   

9.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

10.
The subject of the present study is to relate the boiling heat transfer process with experimentally observed bubble behaviour during subcooled flow boiling of water in a vertical heated annulus. It presents an attempt to explain the transition from partial to fully developed flow boiling with regard to bubble growth rates and to the time that individual bubbles spend attached to the heater surface.Within the partial nucleate boiling region bubbles barely change in size and shape while sliding a long distance on the heater surface. Such behaviour indicates an important contribution of the microlayer evaporation mechanism in the overall heat transfer rate. With increasing heat flux, or reducing flow rate at constant heat flux, bubble growth rates increase significantly. Bubbles grow while sliding, detach from the heater, and subsequently collapse in the bulk fluid within a distance of 1-2 diameters parallel to the heater surface. This confirms that bubble agitation becomes a leading heat transfer mode with increasing heat flux. There is however, a sharp transition between the two observed bubble behaviours that can be taken as the transition from partial to fully developed boiling. Hence, this information is used to develop a new model for the transition from partial to fully developed subcooled flow boiling.  相似文献   

11.
Heat transfer associated with a vapor bubble sliding along a downward-facing inclined heater surface was studied experimentally using holographic interferometry. Volume growth rate of the bubbles as well as the rate of heat transfer along the bubble interface were measured to understand the mechanisms contributing to the enhancement of heat transfer during sliding motion. The heater surface was made of polished silicon wafer (length 185 mm and width 49.5 mm). Experiments were conducted with PF-5060 as test liquid, for liquid subcoolings ranging from 0.2 to 1.2 °C and wall superheats from 0.2 to 0.8 °C. The heater surface had an inclination of 75° to the vertical. Individual vapor bubbles were generated in an artificial cavity at the lower end of the heater surface. High-speed digital photography was used to measure the bubble growth rate. The temperature field around the sliding bubble was measured using holographic interferometry. Heat transfer at the bubble interface was calculated from the measured temperature field. Results show that for the range of parameters considered the bubbles continued to grow, with bubble growth rates decreasing with increasing liquid subcooling. Heat transfer measurements show that condensation occurs on most of the bubble interface away from the wall. For the parameters considered condensation accounted for less than 12% of the rate heat transfer from the bubble base. In this study the heater surface showed no drop in temperature as a result of heat transfer enhancement during bubbles sliding.  相似文献   

12.
Experiments are conducted here to investigate how the channel size affects the saturated flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. The measured heat transfer data indicate that the saturated flow boiling heat transfer coefficient increases with a decrease in the gap of the duct. Besides, raising the imposed heat flux can cause a significant increase in the boiling heat transfer coefficients. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are milder. The results from the flow visualization show that the mean diameter of the bubbles departing from the heating surface decreases slightly at increasing R-134a mass flux. Moreover, the bubble departure frequency increases at reducing duct size mainly due to the rising shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities in the heating surface tend to merge together to form big bubbles. Correlation for the present saturated flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

13.
Bubbles have been observed rapidly sweeping along very fine heated wires during subcooled nucleate boiling with jet flows emanating from the tops of the vapor bubbles. This paper analyzes the physical mechanisms driving the bubble and the jet flows from the tops of these moving bubbles. The flows are analyzed by numerically solving the governing equations for the velocity and temperature distributions around the bubble and the heated wire as the bubble moves along the wire. The bubble motion is due to the non-uniform temperature distribution in the liquid and in the wire caused by the bubble as it moves along the wire. The flow is driven by the horizontal Marangoni flow induced by the temperature difference across the bubble which thrusts the bubble forward. Comparisons with experimental observations suggest that the condensation heat transfer at the bubble interface is restricted by non-condensable gases that increases the surface temperature gradient and the resulting Marangoni flow.  相似文献   

14.
A uniform electric field elongates spherical bubbles to prolate spheroids. This results in a larger surface area to volume ratio for a given bubble size, and more efficient heat transfer from a superheated liquid to the bubbles during nucleate boiling. Hence bubbles should grow faster in an electric field. This paper studies the bubble growth rate in an electric field using the heat diffusion controlled growth model.  相似文献   

15.
Nucleate boiling heat transfer and bubble dynamics in a thin liquid film on a horizontal rotating disk were studied. A series of experiments were conducted to determine the heat transfer coefficient on the disk. At low rotation and flow rates, vigorous boiling increased the heat transfer coefficients above those without boiling. Higher rotational speeds and higher flow rates increased the heat transfer coefficient and suppressed boiling by decreasing the superheat in the liquid film. The flow field on the disk, which included supercritical (thin film) flow upstream of a hydraulic jump, and subcritical (thick film) flow downstream of a hydraulic jump, affected the type of bubble growth. Three types of bubble growth were identified. Vigorous boiling with large, stationary bubbles were observed in the subcritical flow. Supercritical flow produced small bubbles that remained attached to the disk and acted as local obstacles to the flow. At low rotational rates, the hydraulic jump that separated the supercritical and subcritical regions produced hemispherical bubbles that protruded out of the water film surface and detached from the disk, allowing them to slide radially outward. A model of the velocity and temperature of the microlayer of water underneath these sliding bubbles indicated that the microlayer thickness was approximately 1/25th of that of the surrounding water film. This microlayer is believed to greatly enhance the heat transfer rate underneath the sliding bubbles.  相似文献   

16.
An analytical approach for heat transfer modelling of jet impingement boiling is presented. High heat fluxes with values larger than 10 MW/m2 can be observed in the stagnation region of an impinging jet on a red hot steel plate with wall temperatures normally being associated with film boiling. However, sufficiently high degrees of subcooling and jet velocity prevent the formation of a vapor film, even if the wall superheat is large. Heat transfer is governed by turbulent diffusion caused by the rapid growth and condensation of vapor bubbles. Due to the high population of bubbles at high heat fluxes it has to be assumed that a laminar sublayer cannot exist in the immediate vicinity of a red hot heating surface. A mechanistic model is proposed which is based on the assumption that due to bubble growth and collapse the maximum turbulence intensity is located at the wall/liquid interface and that eddy diffusivity decreases with increasing wall distance.  相似文献   

17.
Film boiling of water and of an aqueous binary mixture with a more volatile component (4.1 wt % 2-butanone) has been studied on a horizontal, electrically heated platinum wire with a diameter of 200 μm.

The most important experimental result is the reduction of the direct vapour production at the film in the mixture, which accounts to only 53 per cent of the heat flux, in contrast to a value of 95 per cent in pure liquids. Also, the heat transfer coefficient in the mixture is increased up to a factor of 1.8 at burnout in comparison to water.

The curious behaviour of the mixture is attributed to mass diffusion : a local exhaustion of the more volatile component in the liquid at the film interface causes an additional heat flow into the bulk liquid.  相似文献   


18.
An analytical model of heat transfer based on evaporation from the micro and macrolayers to the vapor bubble during pool boiling is developed. Evaporation of microlayer and macrolayer during the growth of individual bubbles is taken care of by using temporal and spatial variation of temperature in the liquid layer. Change of bubble shape during the entire cycle of bubble growth and departure is meticulously considered to find out the rate of heat transfer from the solid surface to the boiling liquid. Continuous boiling curve is developed by considering the bubble dynamics and decreasing thickness of liquid layer along with the increase of dry spot radius. Transient variation of macrolayer and microlayer thickness is predicted along with their effect on CHF. Present model exhibits a good agreement with reported experimental data as well as theories.  相似文献   

19.
Flow boiling in micro channels is attracting large attention since it leads to large heat transfer area per unit volume. Generated vapor bubbles in micro channels are elongated due to the restriction of channel wall, and thus slug flow becomes one of the main flow regimes. In slug flow, sequential bubbles are confined by the liquid slugs, and thin liquid film is formed between tube wall and bubble. Liquid film evaporation is one of the main heat transfer mechanisms in micro channels and liquid film thickness is a very important parameter which determines heat transfer coefficient. In the present study, liquid film thickness is measured by laser focus displacement meter under flow boiling condition and compared with the correlation proposed for an adiabatic flow. The relationship between liquid film thickness and heat transfer coefficient is also investigated. Initial liquid film thickness under flow boiling condition can be predicted well by the correlation proposed under adiabatic condition. Under flow boiling condition, liquid film surface fluctuates due to high vapor velocity and shows periodic pattern against time. Frequency of periodic pattern increases with heat flux. At low quality, heat transfer coefficients calculated from measured liquid film thickness show good accordance with heat transfer coefficients obtained directly from wall temperature measurements.  相似文献   

20.
During nucleate pool boiling of pure water and water with cationic surfactant, the motion of bubbles and the temperature of the heated surface were recorded by a high-speed video camera and an infrared radiometer. All experiments were performed at saturated boiling conditions. The boiling curves for various concentrations were obtained and compared. The results show that the bubble behavior and the heat transfer mechanism for the surfactant solution are quite different from those of pure water. The heat transfer dependence on the relative changes of both the surface tension and the kinematic viscosity was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号