首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于电机电流信号的齿轮泵故障识别方法   总被引:1,自引:0,他引:1  
孙昱  何林 《机床与液压》2021,49(17):191-195
针对机械类信号在齿轮泵故障识别与诊断中存在的信号获取成本高、信噪比低、故障特征不易获取等问题,提出一种基于电机电流信号的液压齿轮泵故障识别方法。分析通过驱动电机电流信号对齿轮泵故障进行识别的可行性,对所采用的VMD方法的参数进行了优化,结合齿轮泵运行工况对IMF分量的相关性进行分析,并重构了电流信号,依据其排列熵和均方根值所构造的特征样本并融合KFCM聚类算法,对齿轮泵进行故障识别与诊断。并通过机电液试验台对不同故障类型的齿轮泵进行试验,试验结果表明:所提电机电流信号分析与特征提取方法可准确而有效识别齿轮泵故障。  相似文献   

2.
吴一全  叶志龙  万红  刚铁 《焊接学报》2014,35(7):17-21,104
为了进一步提高焊接缺陷识别的准确度和效率,提出了一种基于Contourlet变换和混沌粒子群优化核主成分分析(kernel principal component analysis,KPCA)的焊接缺陷图像特征提取方法.首先通过Contourlet变换将焊接缺陷图像进行多尺度分解,提取低频分量和特定方向上的高频分量;然后运用混沌粒子群优化后的KPCA分别提取缺陷训练样本和缺陷测试样本的特征;最后根据测试样本特征与训练样本特征之间的欧式距离确定缺陷测试样本的类型.结果表明,与基于核主成分分析特征提取法、基于小波的核主成分分析特征提取法相比,文中方法提取的特征更为完整,识别率更高,运行速度较快.  相似文献   

3.
郑恒  姜宏  章翔峰 《机床与液压》2021,49(11):179-182
轴承故障诊断环境复杂、影响因素多,导致特征高维化成为一个技术难题,采用核主成分分析法(KPCA)进行高维特征降维取得了一定成效,但KPCA未考虑特征间的相似性对计算复杂度以及分离效果的影响,对提高计算实时性和有效性以及提升分类效果形成了限制。为此提出了基于K均值聚类算法和KPCA方法的聚KPCA方法。利用均值聚类算法的思想对所提取的时、频域特征中的相似特征进行聚类,降低后续KPCA计算的复杂度,再用KPCA对聚类后的特征进行降维,将高维特征映射到一个类别可分度较高的特征空间。利用正常、内圈故障、外圈故障、滚动体故障4种轴承状态信号特征对聚KPCA方法进行验证,结果表明:与KPCA方法相比,所提出的聚KPCA方法具有更好的降维分离效果和较强的鲁棒性。  相似文献   

4.
液压泵早期故障信号具有非平稳性、强背景噪声、弱故障特征特点,故障特征难以有效提取。为此,提出基于自相关分析与最大相关峭度解卷积算法的齿轮泵故障特征提取方法,利用MCKD算法对采集信号去噪处理,增强信号中的原始冲击成分,提高信号的信噪比;基于峭度(或峭度绝对值,或峭度平方值)的特征信息提取方法,来度量机械信号的非高斯性程度,以表征机械设备的运行状态信息。试验结果证明:所提方法能够有效提取液压泵故障信号中的特征信息。  相似文献   

5.
基于模糊C均值算法的齿轮泵故障诊断技术   总被引:1,自引:0,他引:1  
以CB-KP63齿轮泵为研究对象,提出了利用小波包频带能量提取齿轮泵的信号特征,用模糊C均值聚类算法得到齿轮泵的故障模式,然后用模糊贴近度进行故障模式的识别.实验结果表明,在此算法下,齿轮泵4种不同工作状态下的振动信号具有明显的可分性,并且该诊断方法对不同类型的齿轮泵故障诊断、维修保养等都具有一定的实用性.  相似文献   

6.
针对齿轮泵故障成因复杂、模糊性强的特点,结合小波包分解与K-L变换,提出一种适用于支持向量机故障诊断的特征提取方法。通过小波包对样本故障振动信号进行分解得到特征向量,而后利用K-L变换处理得到新的特征向量集,达到降维去噪的目的。将处理后的特征向量集用于支持向量机的模型训练,分析结果表明:该方法能够有效提高故障模式识别准确率和识别效率。  相似文献   

7.
针对齿轮箱的故障表征不明显且传统分类方法精度低等问题,提出一种基于核主成分分析(KPCA)特征提取和蚁群算法优化极限学习机神经网络(ACA-ELM)分类识别相结合的齿轮箱故障诊断方法。首先,从齿轮箱的原始信号中提取时域与频域特征构成特征矩阵,利用KPCA方法降低维度,剔除冗余信息,提取有效的特征指标;其次,利用蚁群算法(Ant Colony Algorithm, ACA)对极限学习机(Extreme Learning Machine, ELM)的网络初始权值与偏置进行优化,得到最优权值与偏置组合;最后,利用ACA-ELM进行齿轮箱故障诊断实验,同时与ELM、BP、ACA-BP、GA-ELM模型对比。实验结果表明,该方法进行故障诊断的准确率可以达到98.3%,能够有效地进行齿轮箱故障诊断。  相似文献   

8.
为降低齿轮泵发生故障后对工作效率的影响,将深度学习技术应用到齿轮泵故障诊断分析中,以BP神经网络为基础搭建多层感知器模型。首先,对齿轮泵的出口压力信号进行特征量提取、归一化处理等一系列处理,构建特征向量;然后,将特征信号输入到BP神经网络模型中进行模型训练,通过调节学习率、误差容限、动量因子等初始值将实验样本进行分类、预测;接着,再次将特征信号输入到多层感知器模型中,实现对齿轮泵的故障状态识别。结果表明,与BP神经网络算法相比,利用深度神经网络构建多层感知模型能够有效地诊断出齿轮泵是否发生故障,准确率可以达到95.56%以上。  相似文献   

9.
提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)与IMF样本熵结合的滚动轴承故障特征提取方法。利用CEEMDAN算法对振动信号进行了自适应分解,将非稳定的振动信号分解成了若干个固有模态函数(IMF)分量。计算了包含主要故障特征信息的IMF分量样本熵,实现了故障特征量化。在此基础上利用SVM在少量数据样本的情况下具有较强的学习和分类能力,通过样本数据学习与待测样本的模式识别实现滚动轴承智能诊断。通过仿真与实验数据分析,证明该方法能够改善信号特征提取的效果,对故障类型的判断表现出较高的识别率。  相似文献   

10.
现有滚动轴承故障特征提取算法的性能会随着故障集规模扩大而出现衰减。针对故障信号间存在的干扰和模态混叠等问题,提出一种基于双树复小波的特征提取算法。双树复小波结构包含两个独立的滤波器组,在含噪混合信号的分解和重构中形成互补关系,提升信号采样的平稳性;优化双树复小波滤波器组的结构,降低故障信号平移敏感性,利用门限阈值处理高频小波系数,达到降噪的目的,并基于时间序列样本熵提取子带信号的能量特征。实验结果显示:提出的算法能够准确提取滚动轴承各部分的故障特征信息,算法的在线故障识别率达到99.56%。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号