首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
陈晓 《机床与液压》2019,47(17):192-197
介绍了M4系列负载敏感比例多路阀的结构特点和工作原理,并在AMESim软件中建立该阀的相应模型,通过对其动态特性进行仿真可知,在单泵负载敏感比例多路阀液压系统中,当系统提供的流量充足时,多路阀的各负载联流量对负载的变化不敏感;当系统提供的流量不足时,多路阀的小负载联在负载变化时流量变化不大,大负载联在负载变化时流量变化较大。在采用双泵合流供油液压系统中,可在系统流量不足时双泵同时工作,避免因流量不足引起负载联的运动出现滞后及停止。通过仿真分析,深入了解M4系列负载敏感比例多路阀的动态特性,为其在液压系统设计及使用过程提供相关参考依据。所建立的模型为其他类型的负载敏感比例多路阀的模型建立、参数优化及设计开发提供了参考,具有一定的实用价值。  相似文献   

2.
陈叙  陈奎生 《机床与液压》2019,47(14):54-57
负载独立流量分配(LUDV)因其抗流量饱和及节能广泛应用在液压挖掘机上,但因阀口开启或负载交替变换成为系统最高压力时,会产生一定的液压冲击。针对这一问题,分析LUDV控制原理,并根据LUDV系统以AMESim为平台建立模型,给定交替变化负载信号,对多路阀、补偿阀进出口压力流量特性进行仿真分析。结果表明:建立的模型是正确的;适当增加压力补偿阀弹簧刚度、适当减小补偿阀阀芯最大位移及适当扩大节流口直径可减弱液压冲击,提升系统的稳定性。  相似文献   

3.
席文献 《机床与液压》2024,52(9):156-160
压裂液连续混配常规采用阀前负载敏感液压系统作为其液压动力系统,由于混配施工工艺不断改良细化,在大扭矩工况下多马达复合动作,液压系统流量饱和情况下流量优先向轻载分配。为解决这一问题,优选阀后负载敏感液压系统,在流量供给不足情况下,同比减少各负载流量供给,实现马达同步动作。基于AMESim仿真软件,分别搭建连续混配设备阀前及阀后负载敏感液压系统仿真模型,得到泵与马达压力、流量及功率变化曲线。仿真结果表明:阀后负载敏感系统中,负载敏感泵输出功率始终与负载所需功率相匹配;系统流量充足时,泵输出流量始终随着系统所需流量的变化而变化;系统流量不足时,阀后负载敏感阀可以实现流量共享,各马达负载同步动作。实验结果表明:仿真与实验数据差距小于3%,阀后负载敏感系统可以按照阀口开度比例分配各路负载流量,实现各负载平稳动作。  相似文献   

4.
刘伟 《机床与液压》2020,48(2):45-48
负载敏感液压系统中,为防止多路阀处于中位时LS反馈油路困油导致系统憋压,通常需对多路阀处于中位时的LS反馈油路进行回油卸荷。分析4种不同负载敏感多路阀及系统LS中位卸荷油路的工作原理及特性。并以起重机卷扬起升系统为研究对象,理论分析了LS反馈油路为固定阻尼孔卸荷形式的多路阀负载敏感系统流量和压力特性,并进行了仿真和试验验证。  相似文献   

5.
为了提高电液负载模拟器加载系统的控制性能,并解决多余力抑制这一技术难题,对流量阀单阀控制电液负载模拟器系统和流量阀与P-Q阀双阀并联控制电液负载模拟器系统进行了建模、仿真和试验研究.仿真和实验结果表明:加载系统采用双阀并联控制比单阀控制的多余力明显减小,动态加载精度明显提高.  相似文献   

6.
王磊 《机床与液压》2019,47(8):74-78
当运梁车行走液压系统采用转速感应阀控制时,发动机低转速会使负载敏感系统流量不饱和,从而直接导致执行机构速度受负载大小影响。针对此问题,提出使用独立流量分配系统的方法。利用AMESim软件对系统进行建模仿真,通过对比测试与仿真曲线,验证了仿真模型的准确性和系统原理的正确性。仿真结果表明:该系统能够实现发动机在不同转速下、开式液压系统的稳态响应,实现发动机和负载之间的功率匹配,对降低能源消耗具有积极意义。  相似文献   

7.
为了分析泵车臂架液压系统,有必要对泵车臂架液压系统的关键元件负载敏感比例多路阀进行建模与仿真分析并获取其动态特性。根据某型混凝土泵车的臂架液压系统所采用的负载敏感比例多路阀的工作原理,通过多学科领域建模、仿真、分析软件Simulation X建立了该阀的仿真模型,并对此阀进行了动态仿真。结果表明:该阀与实际运行状态一致,并且建模方法简单。  相似文献   

8.
针对多余力影响电液负载模拟器加载精度的问题,增加了流量补偿回路。由于运动的承载系统强迫负载模拟器跟随其运动产生多余力,而多余力是影响电液负载模拟器跟踪精度的主要因素。利用流量补偿速度回路、伺服阀力回路分别控制负载模拟器速度和输出力,从结构上实现力与速度的解耦,消除被测系统主运动对电液负载模拟器加载精度的影响。利用阀口压差对速度回路中的伺服阀流量进行修正,以消除压降对流量的影响从而提高流量补偿回路动态性能。基于PID控制建立系统数学模型并搭建物理仿真模型,通过理论分析和仿真结果分析证明该方案具有可行性。  相似文献   

9.
仲作阳  孟光  荆建平  李明 《机床与液压》2012,40(21):135-137,176
分析混凝土泵车臂架系统负载敏感型比例多路阀的结构、功能和主要技术参数,阐述该多路阀的建模目标和难点。基于多领域统一建模语言Modelica,提出一种新的多路阀模型构建方法。利用Mworks平台搭建该多路阀的模型结构并设置主要参数,并进行实例工况仿真分析。结果表明:这种多路阀建模方式简洁明了,较为贴近实际,且模型具有较高的仿真效率。  相似文献   

10.
负载敏感液压控制系统在多执行器复合工况下,液压泵容易出现流量饱和工况,使得系统的负载敏感特性较差。针对上述问题,设计一种混合型压力补偿液压控制系统,建立该系统的数学模型和AMESim仿真模型,进行理论和仿真分析。结果表明:混合型负载敏感压力补偿系统定差阀前置支路具有大流量优先特性,且液压泵出现流量饱和时,在满足流量优先的条件下,剩余流量能够按照比例进行分配,实现抗流量饱和。研究结果为负载敏感压力补偿系统的设计提供参考。  相似文献   

11.
林军  刘鸣震 《机床与液压》2004,(4):57-58,95
电液比例技术应用于车桥动态检测试验机系统,实现了测试过程中空载、满载、偏载等实际载荷工况的模拟和液力制动模拟,并使系统压力实现远距离程控调节。  相似文献   

12.
阀控液压缸统一流量方程的分析研究   总被引:2,自引:0,他引:2  
从阀控对称液压缸、非对称液压缸的统一特性出发,对负载压力与负载流量进行了重新定义,并对工程中出现的对称阀、非对称阀控制对称缸,对称阀、非对称阀控制非对称缸的各种组合形式,推导了统一的阀控液压缸系统的流量方程,不仅兼顾了液压系统实际工作规律和阀控缸系统的统一性,而且为阀控缸系统的其它特性进一步分析提供了理论基础,并得出了一些对理论分析及工程实际有一定指导意义的结论。  相似文献   

13.
介绍了智能软起动器的节电原理、软件起动特性和在水泥厂中的应用与效果。  相似文献   

14.
简述冶金热轧领域中步进式加热炉液压系统的原理,并对其载荷与工况进行分析。提出该系统的载荷模型建立与计算方法,并将该方法应用于十余项工程项目的实践中,取得了良好的效果,对类似的重载液压系统的设计具有借鉴意义。  相似文献   

15.
针对阀控非对称机构建模和分析当中,存在多种形式定义负载流量和负载压力的问题,根据动力机构功率匹配,归纳了定义负载流量和负载压力的通用原则及表达式,并分析了物理意义.在此基础上,对采用不同形式负载流量和负载压力的阀控非对称缸机构进行了分析,并给出推荐采用的定义形式.  相似文献   

16.
刘伟 《机床与液压》2019,47(14):84-87
发动机-液压系统极限载荷控制是一种根据负载变化自动调节变量泵液压系统的智能电液控制技术。介绍极限载荷控制原理与策略,分析极限载荷控制中传统负载敏感和LUDV负载敏感系统流量调节原理与特性。以起重机卷扬系统为研究对象,试验验证了传统负载敏感系统极限载荷控制流量调节特性,为优化发动机-液压系统极限载荷控制策略提供参考。  相似文献   

17.
非对称阀控制非对称缸系统的静态及动态特性分析   总被引:4,自引:1,他引:4  
本文提出了非对称阀控制非对称缸的概念,并对非对称阀控制非对称缸的静态特性和动态特性进行了分析,画出了系统方框图,推出了其传递函数,对同一系统的传递函数模型和20-sim模型分别仿真,表明推导过程是正确的,对此类伺服系统的设计具有积极的指导意义。  相似文献   

18.
位置同步补偿克服多余力矩分析   总被引:1,自引:0,他引:1  
本文介绍了位置同步补偿负载仿真台克服多余力矩的机理;建立了位置同步补偿负载仿真台的数学模型。通过分析和仿真表明,位置同步补偿法可以克服多余力矩,但是无法彻底消除多余力矩。  相似文献   

19.
针对阀控液压缸的建模,分析现有研究成果的特点。现有建模过程中需要线性化近似,同时负载压力、负载流量的定义多样化,虽然最终可以建立统一的传递函数,但传递函数的系数不确定性因素较大,这将直接影响高精度的应用。从工程角度出发,重新定义负载压力、负载流量的概念,推导出对称阀控非对称液压缸两个方向的传递函数,并对其进行进一步的分析,为电液比例对称阀控非对称液压缸系统的高精度应用提供了参考。  相似文献   

20.
对于轧机伺服液压缸动态性能的测试,目前国内还缺乏成熟的测试系统,其中位移传感器的安装方式是制约动态响应的关键因素。针对目前测试方法的研究现状,提出了一种新的大型轧机伺服液压缸动态性能测试,提高了测试系统的动态响应能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号