首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The anterior and posterior exterolateral nuclei (ELa and ELp) of the mormyrid midbrain are thought to play a critical role in the temporal analysis of the electric discharge waveforms of other individuals. The peripheral electroreceptors receiving electric organ discharges (EODs) of other fish project through the brainstem to ELa via a rapid conducting pathway. EODs, composed of brief, but stereotyped waveforms are encoded as a temporal pattern of spikes. From previous work, we know that phase locking is precise in ELa. Here it is shown that evoked potentials recorded from ELp show a similar high degree of phase locking, although the evoked potentials last much longer. Single-unit recordings in ELp reveal two distinct populations of neurons in ELp: type I cells are responsive to voltage step functions, and not tuned for stimulus duration; type II cells are tuned to a specific range of stimulus durations. Type II cells are less responsive than type I cells, tend to respond with bursts of action potentials rather than with single spikes, have a longer latency, show weaker time locking to stimuli, and are more sensitive to stimulus polarity and amplitude. The stimulus selectivity of type II cells may arise from convergence of type I cell inputs. Despite the loss of rapid conduction between ELa and ELp, analysis of temporal features of waveforms evidently continues in ELp, perhaps through a system of labeled lines.  相似文献   

2.
The electrosensory lobe (ELL) of mormyrid electric fish is a cerebellum-like brainstem structure that receives the primary afferent fibers from electroreceptors in the skin. The ELL and similar sensory structures in other fish receive extensive input from other central sources in addition to the peripheral input. The responses to some of these central inputs are adaptive and serve to minimize the effects of predictable sensory inputs. Understanding the interaction between peripheral and central inputs to the mormyrid ELL requires knowledge of its functional circuitry, and this paper examines this circuitry in the in vitro slice preparation and describes the axonal and dendritic morphology of major ELL cell types based on intracellular labeling with biocytin. The cells described include medium ganglion cells, large ganglion cells, large fusiform cells, thick-smooth dendrite cells, small fusiform cells, granule cells, and primary afferent fibers. The medium ganglion cells are Purkinje-like interneurons that terminate on the two types of efferent cells, i.e., large ganglion and large fusiform cells, as well as on each other. These medium ganglion cells fall into two morphologically distinct types based on the distributions of basal dendrites and axons. These distributions suggest hypotheses about the basic circuit of the ELL that have important functional consequences, such as enhancement of contrast between "on" elements that are excited by increased afferent activity and "off" elements that are inhibited.  相似文献   

3.
Distal versus proximal inhibitory shaping of feedback excitation in the electrosensory lateral line lobe: implications for sensory filtering. J. Neurophysiol. 80: 3214-3232, 1998. The inhibition controlling the indirect descending feedback (parallel fibers originating from cerebellar granule cells in the eminentia posterior pars granularis) to electrosensory lateral line lobe (ELL) pyramidal cells was studied using intracellular recording techniques in vitro. Parallel fibers (PF) contact stellate cells and dendrites of ventral molecular layer (VML) GABAergic interneurons. Stellate cells provide local input to pyramidal cell distal dendrites, whereas VML cells contact their somata and proximal dendrites. Single-pulse stimulation of PF evoked graded excitatory postsynaptic potentials (EPSPs) that were blocked by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl--aspartate (NMDA) antagonists. The EPSPs peaked at 6.4 +/- 1.8 ms (mean +/- SE; n = 11) but took >50 ms to decay completely. Tetanic stimulation (100 ms, 100 Hz) produced a depolarizing wave with individual EPSPs superimposed. The absolute amplitude of the individual EPSPs decreased during the train. Spike rates, established by injected current, mostly were increased, but in some cells were decreased, by tetanic stimulation. Global application of a gamma-aminobutyric acid-A (GABAA) antagonist to the recorded cell's soma and apical dendritic region increased the EPSP peak and decay phase amplitudes. Tetanic stimulation always increased current-evoked spike rates after GABAA blockade during, and for several hundred milliseconds after, the stimulus. Application of a GABAB antagonist did not have any significant effects on the PF-evoked response. This, and the lack of any long hyperpolarizing inhibitory postsynaptic potentials, suggests that VML and stellate cell inhibition does not involve GABAB receptors. Focal GABAA antagonist applications to the dorsal molecular layer (DML) and pyramidal cell layer (PCL) had contrasting effects on PF-evoked EPSPs. DML GABAA blockade significantly increased the EPSP peak amplitude but not the decay phase of the EPSP, whereas PCL GABAA-blockade significantly increased the decay phase, but not the EPSP peak, amplitude. The order of antagonist application did not affect the outcome. On the basis of the known circuitry of the ELL, we conclude that the distal inhibition originated from GABAergic molecular layer stellate cells and the proximal inhibition originated from GABAergic cells of the ventral molecular layer (VML cells). Computer modeling of distal and proximal inhibition suggests that intrinsic differences in IPSP dynamics between the distal and proximal sites may be amplified by voltage-dependent NMDA receptor and persistent sodium currents. We propose that the different time courses of stellate cell and VML cell inhibition allows them to act as low- and high-pass filters respectively on indirect descending feedback to ELL pyramidal cells.  相似文献   

4.
The fast electrosensory pathway (FEP) of gymnotiform fish is mediated by tuberous electroreceptor organs innervated by ganglion cells that synapse with spherical cells of the electrosensory lateral line lobe (ELL). Spherical cells project to the magnocellular mesencephalic nucleus. The electrosensory environment was represented somatotopically within ELL. The mandibular (MN) and the supraorbital (SON) nerves projected to rostral ELL (occupying 19-28% and 4-10%, respectively), and the posterior branch of the anterior lateral line nerve (pALLN) projected to caudal ELL (occupying 56-64%). Labeling with horseradish peroxidase or biotinylated dextran-amine demonstrated three kinds of synaptic endings coupling primary afferents to spherical cells: multiple synaptic knobs, medium-sized calyxes, and very large calyxes. Multiple synaptic knobs arose from MN and SON primary afferents and were found in a narrow rostral area covering the centrolateral (CLS) and lateral (LS) segments of ELL. Medium and large calyxes, proceeding from the same nerves, predominated in the remaining parts of the three segments of ELL containing spherical cells. Calyx-type endings were also found in the LS-occupying regions in which the pALLNs projected. Calyx-type endings formed gap junctions but also contained vesicles and showed submembrane specializations typical of chemical synapses. The postsynaptic spherical cells were linked by dendrosomatic gap junctions and were also contacted by unlabeled en passant synaptic boutons, whose fine structure suggested chemical transmission. Electrophysiological studies indicated that spherical cell responsiveness diminished after electrosensory stimulation. This apparently inhibitory phenomenon may be subserved by the unlabeled synaptic boutons, which possibly originate from interneurons that have yet to be identified.  相似文献   

5.
Pupillary responses were studied by electrical stimulation of the posterior commissure (PC) and the nuclei of origin and termination of PC fibers in the cat. Prior to stimulation experiments, cervical sympathectomy was carried out to study the pupillary responses not mediated by the ocular sympathetic nerve. Pupillary responses were recorded by using an infrared pupillo-analyzing system. The stimulus consisted of a 5 s train of cathodal square wave (0.5 ms duration, 50 Hz) pulses. Stimulation of the PC evoked a pupillary response complex (PRC), which began with a rapid pupillary constriction after the latency of 210-317 ms. The threshold of constriction was 10 or 20 microA. Constriction reached its peak shortly after the onset of the stimulus, then the pupil gradually re-dilated (pupillary escape, PE) even though the stimulus was still lasting. The pupil gradually returned, after stimulus termination, to the size before stimulation in the cases with the pupil area before stimulation larger than 20 mm2. On the other hand, in the cases with smaller pupil area before stimulation (< 20 mm2), rapid constriction and PE were followed, after stimulus termination, by a large dilation (after-dilation, AD). The thresholds of PE and AD were 20 or 40 microA. Pupillary constriction was evoked with a large range of stimulus frequency (1-100 Hz). To evoke PE and AD, stimulus frequencies of 10 and 50 Hz were required respectively, and lower frequencies were ineffective. The peak latency of AD increased in proportion to the increase in stimulus frequency and intensity. Following horseradish peroxidase (dissolved in 5% alkyl-phenol ethylene oxide) injection into the pretectal region where fibers from the PC fan out, retrogradely labeled neurons occurred in many subthalamic, pretectal and midbrain nuclei on the other side. They were classified into three groups in terms of the pupillary response evoked by electrical stimulation; the pupillo-constrictory nuclei (PCNs) of which stimulation evoked constriction with the threshold of 20 microA, the pupillo-dilatory nuclei (PDNs) of which stimulation evoked dilation with the threshold of 20 or 10 microA, and other nuclei with higher thresholds of constriction or dilation. The PDNs were further, classified into two groups (Type 1 and Type 2 PDNs) according to the relationship between stimulus intensity and the peak latency of dilation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
To investigate the functional organization of higher brain levels in fish we test the hypothesis that the dorsal gray mantle of the telencephalon of a mormyrid fish has discrete receptive areas for several sensory modalities. Multiunit and compound field potentials evoked by auditory, visual, electrosensory, and water displacement stimuli in this weakly electric fish are recorded with multiple semimicroelectrodes placed in many tracks and depths in or near telencephalic area dorsalis pars medialis (Dm). Most responsive loci are unimodal; some respond to two or more modalities. Each modality dominates a circumscribed area, chiefly separate. Auditory and electrical responses cluster in the dorsal 500 micrometer of rostral and caudolateral Dm, respectively. Two auditory subdivisions underline specialization of this sense. Mechanoreception occupies a caudal area overlapping electroreception but centered 500 micrometer deeper. Visual responses scatter widely through ventral areas. Auditory, electrosensory, and mechanosensory responses are dominated by a negative wave within the first 50 msec, followed by 15-55 Hz oscillations and a slow positive wave with multiunit spikes lasting from 200 to 500 msec. Stimuli can induce shifts in coherence of certain frequency bands between neighboring loci. Every electric organ discharge command is followed within 3 msec by a large, mainly negative but generally biphasic, widespread corollary discharge. At certain loci large, slow ("deltaF") waves usually precede transient shifts in electric organ discharge rate. Sensory-evoked potentials in this fish pallium may be more segregated than in elasmobranchs and anurans and have some surprising similarities to those in mammals.  相似文献   

7.
Modification of an existing neural structure to support a second function will produce a trade-off between the two functions if they are in some way incompatible. The trade-off between two such sensory functions is modeled here in pyramidal neurons of the gymnotiform electric fish's medullar electrosensory lateral line lobe (ELL). These neurons detect two electric stimulus features produced when a nearby object interferes with the fish's autogenous electric field: (1) amplitude modulation across a cell's entire receptive field and (2) amplitude variation within a cell's receptive field produced by an object's edge. A model of sensory integration shows that detection of amplitude modulation and enhancement of spatial contrast involve an inherent mechanistic trade-off and that the severity of the trade-off depends on the particular algorithm of sensory integration. Electrophysiology data indicate that of the two algorithms for sensory integration modeled here for the gymnotiform fish Brachyhypopomus pinnicaudatus, the algorithm with the better trade-off function is used. Further, the intrinsic trade-off within single cells has been surmounted by the replication of ELL into multiple electrosensory map segments, each specialized to emphasize different sensory features.  相似文献   

8.
The ontogeny of the electroreceptors of two species of mormyrids, Campylomormyrus cassaicus and Pollimyrus isidori, was studied. In young larvae (10 and 12 days old, respectively) ampullary organs, knollenorgans, promormyromasts and two types of tuberous organs (differing by their accessory cells) were found. These latter each possess a single sensory cell sitting on a platform of accessory cells. The platform is pierced by an unmyelinated nerve fibre. The promormyromast is composed of a single sensory cell surrounded by several accessory cells. The free apical area of the sensory cell and the accessory cells protrude into an intraepidermal cavity. The receptor cell is innervated by an unmyelinated nerve fibre ending in synaptic boutons. At the disappearance of the larval and appearance of the adult electric discharge the two types of tuberous organs degenerate, whereas the promormyromast differentiates into the typical mormyromast consisting of two types of sensory cells. The two types of tuberous organs and the promormyromast therefore are termed larval electroreceptors. Mormyrids are therefore the first group of electric fish possessing a complete larval electric system, comprising not only a larval electric organ, but also a larval electrosensory system.  相似文献   

9.
The integrity of the myelin sheath is important for normal electrophysiological function and survival of neurons that make up the auditory nerve. It is hypothesized that myelin deficiency of the auditory nerve may change the electrophysiologic characteristics of the auditory system, especially the temporal properties. In this study, the electrically evoked auditory brainstem response (EABR) was systematically evaluated in TrJ and Po-DT-A mice. Both of these mice have a deficit of their peripheral myelin. Correlation between the EABR and degree of myelin deficiency was also evaluated. The EABR in both strains of poorly myelinated mice exhibited prolonged latency, decreased amplitude, elevated threshold of wave I evoked by short-duration stimuli (20 microseconds/phase). A 2-pulse stimulation paradigm was used to evaluate refractory properties. Myelin-deficient mice exhibited slower recovery from the refractory state than controls. Long-duration stimuli (4 ms/phase) were used to assess integration properties. Myelin-deficient mice demonstrated prolonged wave I latency and more gradual latency changes with current level. Myelin thickness showed a strong correlation with EABR threshold for short-duration stimulation (r = -0.784), maximum wave I latency (r = -0.778) and the time constant of the wave I latency-current level function (r = -0.736) for long-duration stimulation and normalized wave I recovery functions (r = -0.718). These findings suggest that EABR measurement may be a promising tool to assess the electrically stimulated properties of auditory neurons, particularly related to the status of myelin sheath.  相似文献   

10.
To clarify the role of primary and second somatosensory cortex (SI and SII) in somatosensory discrimination, we recorded somatosensory evoked magnetic fields during a stimulus strength discrimination task. The temporal pattern of cortical activation was analyzed by dipole source model coregistered with magnetic resonance image. Stimulus intensity was represented in SI as early as 20 ms after the stimulus presentation. The later components of SI response (latency 37.7 and 67.9 ms) were enhanced by rarely presented stimuli (stimulus deviancy) during passive and active attention. This supports an early haptic memory mechanism in human primary sensory cortex. Contra- and ipsilateral SII responses followed the SI responses (latency 124.6 and 138.3 ms, respectively) and were enhanced by attention more prominently than the SI responses. Active attention increased SII but not SI activity. These results are consistent with the concept of ventral somatosensory pathway that SI and SII are hierarchically organized for passive and active detection of discrete stimuli.  相似文献   

11.
This study evaluated the effects of stimulus repetition rate, phase, and frequency on the auditory brainstem response (ABR) in normal-hearing neonates and adults. In both neonates and adults, the results clearly showed large ABR wave V latency differences between condensation and rarefaction for low-frequency stimuli. Phase dependent latency effects are believed to be a result of the phase-sensitive low-frequency neurons. Increasing stimulus repetition rate produced greater wave V latency shift in neonates than in adults. The consequences of rate changes were independent of stimulus phase and frequency.  相似文献   

12.
This study characterized patterns of brain electrical activity associated with selective attention to the color of a stimulus. Multichannel recordings of event-related potentials (ERPs) were obtained while subjects viewed randomized sequences of checkerboards consisting of isoluminant red or blue checks superimposed on a grey background. Stimuli were presented foveally at a rapid rate, and subjects were required to attend to the red or blue checks in separate blocks of trials and to press a button each time they detected a dimmer target stimulus of the attended color. An early negative ERP component with an onset latency of 50 ms was sensitive to stimulus color but was unaffected by the attentional manipulation. ERPs elicited by attended and unattended stimuli began to diverge after approximately 100 ms following stimulus onset. Inverse dipole modelling of the attended-minus-unattended difference waveform indicated that an initial positive deflection with an onset latency of 100 ms had a source in lateral occipital cortex, while a subsequent negative deflection with an onset at 160 ms had a source in inferior occipito-temporal cortex. Longer-latency attention-sensitive components were localized to premotor frontal areas (onset at 190 ms) and to more anterior regions of the fusiform gyrus (onset at 240 ms). These source localizations correspond closely with cortical areas that were identified in previous neuroimaging studies as being involved in color-selective processing. The present ERP data thus provide information about the time course of stimulus selection processes in cortical areas that subserve attention to color.  相似文献   

13.
Saccadic eye movements are required for the recognition of peripheral objects in road traffic. Their latencies largely determine reaction time in emergency situations. The aim of this study was to investigate the influence of stimulus and surround parameters on the temporal characteristics of saccadic eye movements under conditions of object size, contrast and luminance corresponding to nighttime traffic. Square stimuli of 1 degree or 5 degrees size were presented under an eccentricity of 5 degrees and 15 degrees. The luminance of the surround was 4 x 10(-4) cd/m2 and 1 cd/m2. More than approx. 2,000 saccades of 7 normal subjects were registered and evaluated with respect to the latency, maximal velocity, and frequency of secondary saccades. At high stimulus contrast, latency approaches a minimum of approx. 200 ms. Latency increases with decreasing contrast up to maximal values of more than 600 ms. Transforming the contrast values into a relative decibel scale shows that this increase in latency occurs at significantly higher relative contrast values under scotopic as compared with photopic conditions. Our results demonstrate that an overall latency of 200-300 ms is not adequate for the assessment of accidents, especially under the stimulus conditions of nighttime traffic.  相似文献   

14.
To compare the heat responses of mechanically sensitive and mechanically insensitive A-fiber nociceptors, an electrical search technique was used to locate the receptive fields of 156 A-fibers that innervated the hairy skin in the anesthetized monkey (77 A beta-fibers, 79 A delta-fibers). Two-thirds of these afferents were either low-threshold mechanoreceptors (n = 91) or low-threshold cold receptors (n = 11). Nine A beta-fibers and 41 A delta-fibers were cutaneous nociceptors, and four A delta-fibers innervated subcutaneous tissue. The majority of cutaneous A-fiber nociceptors were heat sensitive (43/50 = 86%). Heat-insensitive cutaneous A-fiber nociceptors consisted of one cold nociceptor, three silent nociceptors, and three high-threshold mechanoreceptors. Two types of response were observed to an intense heat stimulus (53 degrees C, 30 s). Type I (n = 26) was characterized by a long latency (mean: 5 s) and a late peak discharge (16 s). Type II (n = 17) was characterized by a short latency (0.2 s) and an early peak discharge (0.5 s). Type I fibers exhibited faster conduction velocities (25 vs. 14 m/s) and higher heat thresholds (> 53 vs. 47 degrees C, 1-s duration) than type II fibers. The possibility that the type I heat response was a result of sensitization was tested in three fibers by determining the heat threshold to 30-s duration stimuli (42-46 degrees C). For this long stimulus duration heat thresholds were reproducible across multiple runs, and the threshold to the 1-s duration stimulus was not altered by these tests. Thus fibers with a type I heat response were not high-threshold mechanoreceptors that developed a heat response through sensitization. Fibers with a type II heat response had significantly higher mechanical thresholds (median: 15 bar) than fibers with a type I heat response (5 bar). This finding accounts for the observation that type II heat responses were infrequently observed in earlier studies wherein the search technique depended on mechanical responsiveness. Fibers with a type II response exhibited a graded response to heat stimuli, marked fatigue to repeated applications of heat stimuli, and adaptation to sustained heat stimuli similar to that seen in C-fiber nociceptors. First pain sensation to heat is served by type II A-fiber nociceptors that are mechanically insensitive. Type I A-fiber nociceptors likely signal pain to long-duration heat stimuli and may signal first pain sensation to mechanical stimuli.  相似文献   

15.
Elasmobranch fishes localize weak electric sources at field intensities of < 5 eta V cm-1, but the response dynamics of electrosensory primary afferent neurons to near threshold stimuli in situ are not well characterized. Electrosensory primary afferents in the round stingray, Urolophus halleri, have a relatively high discharge rate, a regular discharge pattern and entrain to 1-Hz sinusoidal peak electric field gradients of < or = 20 eta V cm-1. Peak neural discharge for units increases as a non-linear function of stimulus intensity, and unit sensitivity (gain) decreases as stimulus intensity increases. Average peak rate-intensity encoding is commonly lost when peak spike rate approximately doubles that of resting, and for many units occurs at intensities < 1 microV cm-1. Best neural sensitivity for nearly all units is at 1-2 Hz with a low-frequency slope of 8 dB/decade and a high-frequency slope of -23 dB/decade. The response characteristics of stingray electrosensory primary afferents indicate sensory adaptations for detection of extremely weak phasic fields near 1-2 Hz. We argue that these properties reflect evolutionary adaptations in elasmobranch fishes to enhance detection of prey, communication and social interactions, and possibly electric-mediated geomagnetic orientation.  相似文献   

16.
Study of optimum seeking method with orthogonal test for auditory P300 measuring was carried out in healthy adolescents. The result showed that the optimal conbination of parameters was as follows: stimulus sound was Logon, recording electrode site Cz, analysis time 750 ms, average 100, stimulus rate 1 c/s, target stimulus (TS) probability 10%, bandpass filter 1-50 Hz, non-target stimulus (NTS) freqency 1 kHz, target stimulus (TS) frequency 2 kHz, stimuli intensities 110 dB peSPL. The normal values of auditory P300, obtained from 30 healthy adolescents, including latencies and amplitudes, were measured under optimal parameters. P300 latency was about 310 ms, RT about 258 ms, these two values present a significant linear correlation.  相似文献   

17.
Assessed stimulus relevance vs rarity effects by investigating the N550 to stimuli identified as targets during wakefulness compared to the N550 in response to deviant stimuli with the same probability of occurrence without the target identification. Five Ss (mean age of 22.3 yrs) had their auditory evoked potentials recorded during wakefulness, Stage 1, and Stage 2 non-REM sleep using a 3-tone auditory oddball paradigm. Stage 1 sleep was divided into trials preceded by alpha and those preceded by theta. Results indicate that a negative wave peaking at about 100 ms, N1, displayed a significant decrease in amplitude with the onset of Stage 2 sleep. A later N2 peaked at about 250 ms in the waking state. This changed into a sleep-specific negative wave peaking at 300 ms (N300) at the alpha-theta transition within Stage 1. The P300 displayed a similar shift to become a P450 in Stage 2 sleep. N550 was specific to Stage 2, and was larger in response to rare, rather than frequent stimuli. There was no evidence of any enhancement to relevant rare stimuli compared with irrelevant rare stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
1. Rhythmic locomotor activity was evoked in clonidine-treated acute and chronic spinal cats, and the effect of stimulating group I afferents from the plantaris muscle on the timing and magnitude of bursts in medial gastrocnemius (MG) motoneurons was examined. 2. The locomotor rhythm was entrained when group I afferents in the plantaris nerve were electrically stimulated with trains of stimuli presented at rates above and below the intrinsic frequency of the rhythmic activity. During entrainment at rates higher than the intrinsic frequency, a burst of activity in ipsilateral MG motoneurons was initiated approximately 40 ms after the onset of each stimulus train. At lower rates of entrainment the onset of MG bursts preceded the onset of the stimulus trains, and each stimulus train had an excitatory effect on the MG burst with a latency in the range of 30-50 ms. A similar excitatory effect was observed when the stimulus trains were triggered at a preset delay after the endogenous generation of the MG bursts. 3. The excitatory action of plantaris group I afferents on the MG motoneurons was only seen during periods of locomotor activity. In the absence of rhythmic activity, the same stimulus trains reduced any ongoing tonic activity in MG motoneurons. 4. Vibration of the plantaris muscle to preferentially activate group Ia afferents neither entrained the locomotor rhythm nor increased the magnitude of the MG bursts. 5. We conclude that during locomotor activity, input from group Ib afferents of the plantaris muscle has an excitatory action on the system of interneurons generating the extensor bursts, i.e., on the extensor half-center of the central rhythm generator.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Five experiments with 52 male Charles River CD rats investigated under what conditions a stimulus is timed by the internal clock used in time-discrimination procedures. In Exps I–IV, Ss were trained to time one stimulus (e.g., light) and then tested as to whether they timed a stimulus from another modality (e.g., sound). The 2nd stimulus was treated in 3 ways: exposed (presented alone), paired with food, and extinguished. Exps I and II used the peak procedure, similar to a discrete-trial FI schedule, and paired the treated stimulus with food using instrumental training; Exps III and IV used a psychophysical choice procedure and paired the treated stimulus with food using classical conditioning. All 4 experiments found that there was cross-modal transfer of the time discrimination after pairing but not after exposure or extinction. This suggests that Ss' internal clock timed the treated stimulus after pairing but not after exposure or extinction. Exp V suggested that the decline of responding observed in extinction was not due to changes in timing. Thus, the internal clock apparently times stimuli with signal value (associative strength) and does not time stimuli without signal value. (46 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Eight subjects spent a single night in the sleep laboratory. Event-related potentials (ERPs) were recorded during the presentation of two auditory "oddball' stimulus conditions in which tonal frequency was manipulated. In the first condition, 1000 Hz "standard' and 2000 Hz "deviant' tones were presented. In the second condition, the deviant tone was reduced to 1050 Hz. In both conditions, deviant probability was 0.2. Stimuli were presented every 600 ms during wakefulness and stages 2, 4, and REM of sleep. A distinctive N1 wave was visible in both stimulus conditions when the subject was awake. The deviant stimuli elicited a "mismatch negativity' (MMN) that inverted in polarity at the mastoid. In REM sleep, an N1 and a MMN were also elicited in both conditions. In the large deviance condition, the MMN had a slightly attenuated amplitude and was shorter in duration while in the small deviant condition, its peak latency was unusually early. Neither the N1 nor the MMN could be recorded in non-REM sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号