首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a unified theory for sensorless flux estimation and vector control of induction motors and nonsalient permanent-magnet synchronous motors (PMSMs) is developed. It is shown that an estimator and vector controller for one of the motor types can also be applied to the other, with only minor modifications necessary. Two candidate estimators are considered: a variant of the well-known "voltage model" (VM) and a phase-locked-loop-type speed and position estimator. These are applied to both motor types, and evaluated experimentally. For the nonsalient PMSM, an important result is that synchronization can be guaranteed from any initial rotor position.  相似文献   

2.
建立了一种滑模速度观测器,用于电机转速的精确观测。该观测器充分利用电机状态方程具有的结构特点,设计出简单有效的速度估算方法,在转子磁链的估算中无须用到转子时间常数和转速等信息,提高了观测器对于参数误差的鲁棒性。将所建立的观测器和空间电压矢量脉宽调制技术(SVPWM)结合对电机进行控制,进一步提高了系统的调速性能。仿真结果验证了基于滑模控制理论的异步电机无速度传感器直接转矩控制系统的可行性以及对参数误差的鲁棒性。  相似文献   

3.
夏梅 《变频器世界》2012,(11):70-72
磁链观测一直是异步电机无速度矢量控制的难点,本文以异步电动机本身为参考模型,设计了全阶观测器的可调模型来估算异步电机的磁链和速度。利用Matlab软件构造了按转子磁场定向的矢量控制系统的仿真模型,采用全阶观测器的方法在逆变器仿真平台和实验平台上实现了异步机的无速度矢量控制。通过仿真和试验验证了模型的正确性,结果表明所建立的调速系统具有良好的动态性能。  相似文献   

4.
This paper addresses the problem of wide speed-range sensorless control of a surface-mount permanent-magnet (SMPM) machine including zero-speed operation. A hybrid structure integrating a flux observer and signal-injection techniques is proposed, which results in a rotor position signal independent of motor parameters at low and zero speed. Although the SMPM machine typically has a very low geometric saliency, the injection technique is effective in tracking the saturation-induced saliency produced by the stator flux. Experimental results are presented showing an excellent performance for both the sensorless speed and position control using an off-the-shelf SMPM machine.  相似文献   

5.
本文依据异步电机矢量控制的基本原理,构建了无速度传感器的矢量控制系统。该系统中采用了转子磁链观测器方法,并运用模型参考自适应法进行了转子速度的估计。文中通过了Matlab/Simulink构建系统仿真模型,结果表明了系统的正确性与可行性。  相似文献   

6.
This paper presents a sensorless vector control system for general-purpose induction motors, which is based on the observer theory and the adaptive control theories. The proposed system includes a rotor speed estimator using a q-axis flux and stator resistance identifier using the d-axis flux. The advantages of the proposed system are simplicity and avoidance of problems caused by using only a voltage model. Since the mathematical model of this system is constructed in a synchronously rotating reference frame, a linear model is easily derived for analyzing the system stability, including the influence of the observer gain, motor operating state, and parameter variations. In order to obtain stable low-speed operation and speed control accuracy, an algorithm for compensating for the deadtime of the inverter and correcting the nonideal features of an insulated gate bipolar transistor was developed. The effectiveness of the proposed system has been verified by digital simulation and experimentation  相似文献   

7.
This paper presents a new method of online estimation for the stator and rotor resistances of the induction motor for speed sensorless indirect vector controlled drives, using artificial neural networks. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. For the stator resistance estimation, the error between the measured stator current and the estimated stator current using neural network is back propagated to adjust the weights of the neural network. The rotor speed is synthesized from the induction motor state equations. The performance of the stator and rotor resistance estimators and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations for variations in the stator and rotor resistances from their nominal values. Both resistances are estimated experimentally, using the proposed neural network in a vector controlled induction motor drive. Data on tracking performances of these estimators are presented. With this speed sensorless approach, the rotor resistance estimation was made insensitive to the stator resistance variations both in simulation and experiment. The accuracy of the estimated speed achieved experimentally, without the speed sensor clearly demonstrates the reliable and high-performance operation of the drive  相似文献   

8.
State observers are key components of modern ac drives. The paper presents a comparative analysis of two state observers for induction-motor (IM) drives: the speed-adaptive observer and the inherently sensorless observer. The adaptive observer employs the time-variable full-order motor model with the rotor speed as the adaptive quantity. Thus, the speed estimation accuracy significantly impacts on the flux observer. It is shown that the popular model reference adaptive system (MRAS) speed estimator displays reduced bandwidth, and does not deliver adequate performance for the flux estimation. The inherently sensorless observer employs a full-order dual reference-frame model in order to eliminate the speed adaptation. In this way, it becomes decoupled from the speed estimator and its performance is superior to that of its adaptive counterpart. Theoretical aspects and comparative simulation results are discussed for both observers. Comparative experimental results for both observers are presented. Very low-speed-operation (3 r/min) capability of the drive with the sensorless observer is demonstrated.  相似文献   

9.
李家荣 《变频器世界》2009,(1):48-50,95
提出了一种速度自适应的转子磁链闭环观测器,并应用于矢量控制系统中,以取代传统的纯积分器。经过理论证明,该系统是超稳定系统。针对1.1kW感应电机,采用MATLAB/SIMULINK仿真软件对系统进行仿真,仿真结果表明该方案对电机参数变化的鲁棒性较好,磁链观测精度高。同时,基于磁链状态观测器设计的速度辨识方案收敛速度快.精度高,尤其是在较低转速下仍能保持很高的精度。  相似文献   

10.
This work proposes a highly efficient sensorless motor driver chip for various permanent‐magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver,which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current–sensing blocks are included with a 10‐bit successive approximation analog‐to‐digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.  相似文献   

11.
The elimination of the position sensor has been one important requirement in vector control systems because the position sensor spoils the reliability and simplicity of drive systems. Therefore, we present a sensorless vector control technique for synchronous reluctance motors. The rotor position is calculated easily from ds-qs-axes flux linkages which are estimated with a first-order lag compensator. Furthermore, utilizing estimated rotor position as the input of the full-order observer, the rotor speed and disturbance torque are estimated. The proposed sensorless vector control scheme is demonstrated with experimental results  相似文献   

12.
This paper presents a new direct torque controlled space vector modulated method to improve the sensorless performance of matrix converter drives using a parameter estimation scheme. The flux and torque error are geometrically combined in a new flux leakage vector to make a stator command voltage vector in a deadbeat manner. A new sensorless method of estimating the rotor speed, flux, stator resistance, and rotor resistance is derived and verified with experimental results. Common terms in the error dynamics are utilized to find a simpler error model involving some auxiliary variables. Using this error model, the state estimation problem is converted into a parameter estimation problem assuming the rotor speed is constant. The proposed adaptive schemes are determined so that the whole system is stable in the sense of Lyapunov. The effectiveness of the proposed algorithm is verified by experiments.  相似文献   

13.
Novel induction motor control optimizing both torque response and efficiency is proposed in the paper. The main contribution of the paper is a new structure of rotor flux observer aimed at the speed-sensorless operation of an induction machine servo drive at both low and high speed, where rapid speed changes can occur. The control differs from the conventional field-oriented control. Stator and rotor flux in stator fixed coordinates are controlled instead of the stator current components in rotor field coordinates isd and isq. In principle, the proposed method is based on driving the stator flux toward the reference stator flux vector defined by the input command, which are the reference torque and the reference rotor flux. The magnitude and orientation angle of the rotor flux of the induction motor are determined by the output of the closed-loop rotor flux observer based on sliding-mode control and Lyapunov theory. Simulations and experimental tests are provided to evaluate the consistency and performance of the proposed control technique  相似文献   

14.
This paper proposes a design of a robust-adaptive full-order observer based on the /spl gamma/-positive real problem for sensorless induction-motor drives. The adaptive full-order observer is known to become unstable in a major part of the regenerating-mode low-speed operation, and this prevents the sensorless vector controller from operating an induction motor successfully. In this paper, a design of the observer gain for both stable speed identification and robust flux phase estimation and an adaptive scheme for stator resistance identification are proposed. First, the error system of the adaptive full-order observer is reconsidered-requirements of this observer with a speed identifier are described, in which a simple robust observer gain design in the sense of H/sub /spl infin// optimization is not useful in reality. Next, in order to satisfy all the requirements of the robust adaptive observer, the design of the observer gain based on the /spl gamma/-positive real problem and the adaptive scheme for stator resistance are described. Finally, several experimental results show the feasibility and effectiveness of the proposed design.  相似文献   

15.
由于电机定转子参数的变化,利用一般的转子磁链对转速进行估算,将导致不能得到准确的结果。这里采用积分型转子磁链的参考和可调模型构建出一个基于MRAS的异步电机无速度传感器的矢量控制模型。该模型提高了矢量控制系统的动态性能并利用MATLAB,sIMULINK进行了异步电机无速度传感器矢量控制系统的仿真,验证了文中所采用的模型参考自适应的速度估算方法的可行性以及对参数误差的鲁棒性。  相似文献   

16.
A novel control technique for sensorless vector control operation of a double-inverter-fed wound-rotor induction motor is presented. Two current controllers control the stator-side currents based on a vector control algorithm. Another V/f-type flux and frequency controller controls the rotor-side frequency directly. A novel frequency command profile for the rotor-side controller is suggested to make this sensorless drive operation reliable and reduce dependence on motor parameters at any rotor speed. A complete inverter power flow analysis is presented to show that the drive can deliver full torque from 0- to 2-p.u. speed for either direction of rotation. Thus, double the rated power can be extracted from the induction motor without overloading it. The proposed algorithm allows the drive to start on-the-fly without any rotor transducer. Results from a prototype 50-hp drive are presented.  相似文献   

17.
程国栋 《变频器世界》2014,(4):65-68,83
异步电机无速度传感器矢量控制系统是目前研究的热点,本文采用一种闭环磁链观测器,即自适应状态观测器对转子磁链进行观测,与传统开环电压、电流模型相比,观测效果更好。在转子磁链观测的基础上,采用PI型自适应律,对转速进行了辨识。最后,通过Matlab仿真验证了本文给出的异步电机无速度传感器矢量控制系统的可行性,仿真结果表明该系统具有较好的动、静态性能,并具有一定的抗干扰能力。  相似文献   

18.
A field-oriented control method based on a predictive observer with digital current regulation of an induction motor, without speed and voltage sensors, is proposed. Measuring only stator currents and estimating motor speed and rotor fluxes by a predictive state observer with variable pole selection the stator currents are controlled to be exactly equal to the reference currents at every sampling instant. The resulting speed and rotor fluxes are estimated with low sensitivity to parameter variation, and the torque ripples are reduced. The proposed method consists of four parts: identification of the rotor speed, derivation of a digital control law, construction of a state observer that predicts the rotor flux and the stator currents, and derivation of field-oriented control. A theoretical analysis of the method, computer simulations, and experimental results are described  相似文献   

19.
For a high-power induction motor drive, the switching frequency of the inverter cannot become higher than one kilohertz, and such a switching frequency produces a large current ripple, which then produces torque ripple. To minimize the current ripple, a method based on deadbeat control theory for current regulation is proposed. The pulsewidth modulation (PWM) pattern is determined at every sampling instant based on stator current measurements, motor speed, current references, and rotor flux vector, which is predicted by a state observer with variable poles selection, so that the stator currents are controlled to be exactly equal to the reference currents at every sampling instant. The proposed method consists of two parts: (1) derivation of a deadbeat control and (2) construction of a state observer that predicts the rotor flux and the stator currents in the next sampling instant. This paper describes a theoretical analysis, computer simulations and experimental results  相似文献   

20.
In the speed sensorless control of the induction motor, the machine parameters (especially rotor resistance R2) have a strong influence on the speed estimation. It is known that the simultaneous estimation of the rotor speed and R2 is impossible in the slip frequency type vector control, because the rotor flux is constant. But the rotor flux is not always constant in the speed transient state. In this paper, the R2 estimation in the transient state without signal injection to the stator current is proposed. This algorithm uses the least mean square algorithm and the adaptive algorithm, and it is possible to estimate R2 exactly. This algorithm is verified by the digital simulations and experiments  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号