首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a nonsmooth output feedback framework for local and/or global stabilization of a class of nonlinear systems that are not smoothly stabilizable nor uniformly observable. A systematic design method is presented for the construction of stabilizing, dynamic output compensators that are nonsmooth but HÖlder continuous. A new ingredient of the proposed output feedback control scheme is the introduction of a recursive observer design algorithm, making it possible to construct a reduced-order observer step-by-step, in a naturally augmented manner. Such a nonsmooth design leads to a number of new results on output feedback stabilization of nonlinear systems. One of them is the global stabilizability of a chain of odd power integrators by HÖlder continuous output feedback. The other one is the local stabilization using nonsmooth output feedback for a wide class of nonlinear systems in the Hessenberg form studied in a previous paper, where global stabilizability by nonsmooth state feedback was already proved to be possible.  相似文献   

2.
In this note, we address the problem of output feedback stabilization for a class of planar systems that are inherently nonlinear in the sense that the linearized system at the origin is neither controllable nor observable. Moreover, the uncontrollable modes contain eigenvalues on the right-half plane. By the well-known necessary condition, such planar systems cannot be stabilized, even locally by any smooth output feedback, and hence must be dealt with by nonsmooth output feedback. The main contribution of this work is the development of a non-Lipschitz continuous output feedback design method that leads to a solution to the problem. The proposed output feedback control scheme is not based on the separation principle but rather, relies on the design of a reduced-order nonlinear observer from an earlier paper with an appropriate twist, and the tool of adding a power integrator. A non-Lipschitz continuous output feedback controller is explicitly constructed, achieving global stabilization of the planar systems without imposing the high-order growth conditions required in a previous paper.  相似文献   

3.
This paper addresses the problem of global finite-time stabilization for a class of uncertain switched nonlinear systems via output feedback under arbitrary switchings. Based on the adding a power integrator approach, we design a homogeneous observer and controller for the nominal switched system without the perturbing nonlinearities. Then, a scaling gain is introduced into the proposed output feedback stabilizer to implement global finite-time stability of the closed-loop system. In addition, the proposed approach can be also extended to a class of switched nonlinear systems with upper-triangular growth condition. Two examples are given to illustrate the effectiveness of the proposed method.  相似文献   

4.
This paper investigates the global output‐feedback stabilization for a class of stochastic nonlinear systems with function control coefficients. Notably, the systems in question possess control coefficients that are functions of output, rather than constants; hence, they are different from the existing literature on stochastic stabilization. To solve the control problem, an appropriate reduced‐order observer is introduced to reconstruct the unmeasured system states before a smooth output‐feedback controller is designed using the backstepping method, which guarantees that the closed‐loop system is globally asymptotically stable in probability. This paper combines the related results in the deterministic and stochastic setting and gives the first treatment on the global output‐feedback stabilization for the stochastic nonlinear systems with function control coefficients. A simulation example is given also to illustrate the effectiveness of the proposed approach.  相似文献   

5.
This paper investigates the problem of robust output feedback stabilization for a family of uncertain nonlinear systems with uncontrollable/unobservable linearization. To achieve global robust stabilization via smooth output feedback, we introduce a rescaling transformation with an appropriate dilation, which turns out to be very effective in dealing with uncertainty of the system. Using this rescaling technique combined with the nonseparation principle based design method, we develop a robust output feedback control scheme for uncertain nonlinear systems in the p-normal form, under a homogeneous growth condition. The construction of smooth state feedback controllers and homogeneous observers uses only the knowledge of the bounding homogeneous system rather than the uncertain system itself. The robust output feedback design approach is then extended to a class of uncertain cascade systems beyond a strict-triangular structure. Examples are provided to illustrate the results of the paper.  相似文献   

6.
This paper deals with stabilization of a class of delay discrete-time nonlinear systems through state and output feedback. We provide an explicit bounded state feedback law as an extension of the Jurdjevic-Quinn method, from nonlinear theory, to this class of systems. Next, we present a useful and systematic approach to design an observer for the same class of systems. Then, we show how the global stabilization problem via dynamic output feedback can be solved by using the two previous results. Finally, numerical examples are given to illustrate the effectiveness of the proposed design method.  相似文献   

7.
In this paper, globally asymptotical stabilization problem for a class of planar switched nonlinear systems with an output constraint via smooth output feedback is investigated. To prevent output constraint violation, a common tangent‐type barrier Lyapunov function (tan‐BLF) is developed. Adding a power integrator approach (APIA) is revamped to systematically design state‐feedback stabilizing control laws incorporating the common tan‐BLF. Then, based on the designed state‐feedback controllers and a constructed common nonlinear observer, smooth output‐feedback controllers, which can make the system output meet the predefined constraint during operation, are proposed to deal with the globally asymptotical stabilization problem of planar switched nonlinear systems under arbitrary switchings. A numerical example is employed to verify the proposed method.  相似文献   

8.
This paper deals with the problem of continuous output‐feedback stabilization for a class of switched high‐order planar systems under arbitrary switchings. Based on the common Lyapunov function design method, by using the adding a power integrator technique and designing an implementable observer, a continuous output‐feedback controller is constructed such that the closed‐loop system is global stabilization and the output can be regulated to the origin. As an application, the developed strategy is utilized to the control design for the continuous stirred tank reactor with two modes feed stream. The simulation results verify the efficiency of the proposed design scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we consider the problem of global output feedback stabilization for a class of nonlinear systems whose nonlinearities are assumed to be bounded by both low‐order and high‐order nonlinearities multiplied by a polynomial‐type output‐dependent growth rate. Instead of the previously proposed dual observer, based on the homogeneous domination approach, a new reduced‐order observer is constructed, which greatly simplifies the closed‐loop controller and is able to cover a more general class of nonlinear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This note considers the problem of global finite-time stabilization by output feedback for a class of planar systems without controllable/observable linearization. A sufficient condition for the solvability of the problem is established. By developing a nonsmooth observer and modifying the adding a power integrator technique, we show that an output feedback controller can be explicitly constructed to globally stabilize the systems in finite time. As a direct application of the main result, global output feedback finite-time stabilization is achieved for the double linear integrator systems perturbed by some nonlinear functions which are not necessarily homogeneous.  相似文献   

11.
This paper addresses the problem of global output feedback stabilization for a class of upper‐triangular systems with perturbing nonlinearities that are higher‐order in the unmeasurable states. A new design method based on the homogeneous domination approach and finite‐time stabilization technique is developed, which leads to global output feedback stabilizers for the upper‐triangular nonlinear systems under a homogeneous growth condition. A new perspective shown in this paper is that the finite‐time stabilization, in addition to its faster convergence rate, can also be utilized to handle control problems that were previously unresolved under asymptotic stabilization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This paper addresses the problem of using output feedback to globally control a class of nonlinear systems whose output functions are not precisely known. First, for the nominal linear system, we design a homogeneous state compensator without requiring precise information of the output function, and construct a nonlinear stabilizer with adjustable coefficients by using the generalized adding a power integrator technique. Then based on the homogeneous domination approach, a scaling gain is introduced into the proposed output feedback controller, which can be used by tuning the scaling gain to solve: (i) the problem of global output feedback stabilization for a class of upper‐triangular systems; and (ii) the problem of global practical output tracking for a class of lower‐triangular systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with global stabilization via output feedback for a class of stochastic nonlinear systems with time‐varying continuous output function. Under linear growth conditions, a new double‐domination method is proposed for the first time to construct an output‐feedback stabilizing controller. Different from the related results, the design of the observer is performed without using the information on the output function and nonlinearities. This paper also provides a viewpoint at the feedback stabilization to eliminate the continuous measurement error originating from inaccurate detection of system state. A simulation example is presented to demonstrate the effectiveness of control strategy.  相似文献   

14.
This paper investigates the problem of global output feedback stabilization for a class of feedforward nonlinear systems via linear sampled-data control. To solve the problem, we first construct a linear sampled-data observer and controller. Then, a scaling gain is introduced into the proposed observer and controller. Finally, we use the sampled-data output feedback domination approach to find the explicit formula for choosing the scaling gain and the sampling period which renders the closed-loop system globally asymptotically stable. A simulation example is given to demonstrate the effectiveness of the proposed design procedure.  相似文献   

15.
研究一类非线性系统的全状态反馈控制问题、观测器设计问题及输出反馈控制设计问题.首先设计出非线性全状态反馈控制器,获得了系统指数镇定的充分条件.然后提出了非线性观测器,并证明了该观测器是指数稳定观测器.进一步,在控制器和观测器问题的充分条件满足的假设下,证明了提出的带估计状态的反馈控制能达到指数镇定.最后,仿真实例验证了所得结果的有效性.  相似文献   

16.
This paper considers the problem of global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and with unmeasured states dependent growth. Mainly due to the uncertain control coefficients, the problem has remained unsolved and its major difficulty stems from the inapplicability of the commonly used high-gain like observer. By introducing an appropriate state transformation and a thoroughly novel observer based on high-gain K-filters, the backstepping design approach is successfully proposed to the output-feedback controller for this class of systems. It is shown that the global asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the control parameters.  相似文献   

17.
This paper considers the global finite‐time output feedback stabilization of a class of nonlinear high‐order feedforward systems. By using the homogeneous domination method together with adding a power integrator method and overcoming several troublesome obstacles in the design and analysis, a global finite‐time output feedback controller with reduced‐order observer is recursively designed to globally finite‐time stabilize nonlinear high‐order feedforward systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The notion of incremental generalized homogeneity is introduced, giving new results on semiglobal stabilization by output feedback and observer design and putting into a unifying framework the stabilization design for triangular (feedback/feedforward) and homogeneous systems. A state feedback controller and an asymptotic state observer are designed separately by dominating the generalized homogeneity degree of the nonlinearities with the degree of the linear approximation of the system and an output feedback controller is obtained according to a certainty‐equivalence principle.  相似文献   

19.
This paper is concerned with the stabilization problem for a class of large-scale nonlinear time-delay systems in lower triangular form. The uncertain nonlinearities are assumed to be bounded by continuous functions of the outputs or delayed outputs multiplied by unmeasured states or delayed states. An observer based output feedback control scheme is proposed using the dynamic gain control design approach. Based on Lyapunov stability theory, global asymptotic stability of the closed-loop control system is proved. Contrary to many existing control designs for lower triangular nonlinear systems, the celebrated backstepping method is not utilized here. An example is finally given to demonstrate the effectiveness of the proposed design procedure.  相似文献   

20.
In this paper, we introduce a generalized framework for global output feedback stabilization of a class of uncertain, inherently nonlinear systems of a particularly complex nature since their linearization around the equilibrium is not guaranteed to be either controllable or observable. Based on a new observer/controller construction and a homogeneous domination design, this framework not only unifies the existing output feedback stabilization results, but also leads to more general results which have been never achieved before, establishing this methodology as a universal tool for the global output feedback stabilization of inherently nonlinear systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号