首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
围绕激光惯性约束聚变研究中内爆靶丸的辐射流诊断需求,设计了一种兼顾空间成像功能的三色软X射线谱仪。该谱仪的设计中心能点为210eV、680eV和800eV,能谱分辨率E/ΔE为5~10。采用X射线掠入射光学结构,实现了三个能点的一维聚焦成像,在1mm视场内空间分辨率优于10μm。采用X射线周期多层膜,获得了三个能区的能谱响应,多层膜测试结果满足设计要求。以光学设计和多层膜为基础,建立了系统的光线追迹模型,分析了可控的空间位置误差和瞄准误差对系统光谱分辨和空间分辨的影响,为装调方案及瞄准方法设计提供了精度依据。该谱仪与条纹相机结合,可用于我国强激光装置上的等离子体诊断实验。  相似文献   

2.
We have developed a prototype X-ray microcalorimeter spectrometer with high energy resolution for use in X-ray microanalysis. The microcalorimeter spectrometer system consists of a superconducting transition-edge sensor X-ray microcalorimeter cooled to an operating temperature near 100 mK by a compact adiabatic demagnetization refrigerator, a superconducting quantum interference device current amplifier followed by pulse-shaping amplifiers and pileup rejection circuitry, and a multichannel analyser with computer interface for the real-time acquisition of X-ray spectra. With the spectrometer mounted on a scanning electron microscope, we have achieved an instrument response energy resolution of better than 10 eV full width at half-maximum (FWHM) over a broad energy range at real-time output count rates up to 150 s?1. Careful analysis of digitized X-ray pulses yields an instrument-response energy resolution of 7.2 ± 0.4 eV FWHM at 5.89 keV for Mn Kα1,2 X-rays from a radioactive 55Fe source, the best reported energy resolution for any energy-dispersive detector.  相似文献   

3.
A gas-phase time-of-flight (TOF) photoelectron spectrometer has been developed for use with synchrotron radiation. The excellent time structure of the synchrotron radiation at the Stanford Positron Electron Accelerator Ring (SPEAR) has been used as the time base for the TOF measurements. The TOF analyzer employs two multichannel plates (MCPs) in tandem as a fast electron multiplier with a matched 50-Omega anode to form an electron detector with a timing resolution of 相似文献   

4.
This article presents a new type of low-energy crossed-beam electron spectrometer for measuring angular differential cross sections of electron-impact excitation of atomic and molecular targets. Designed for investigations at energies close to excitation thresholds, the spectrometer combines a pulsed electron beam with the time-of-flight technique to distinguish between scattering channels. A large-area, position-sensitive detector is used to offset the low average scattering rate resulting from the pulsing duty cycle, without sacrificing angular resolution. A total energy resolution better than 150 meV (full width at half maximum) at scattered energies of 0.5-3 eV is achieved by monochromating the electron beam prior to pulsing it. The results of a precision measurement of the differential cross section for electron-impact excitation of helium, at an energy of 22 eV, are used to assess the sensitivity and resolution of the spectrometer.  相似文献   

5.
An inner-shell photoionized x-ray laser pumped by the Linac Coherent Light Source (LCLS) free electron laser has been proposed recently. The measurement of the on-axis 849 eV Ne?Kα laser and protection of the x-ray spectrometer from damage require attenuation of the 1 keV LCLS beam. An Al/Cu foil combination is well suited, serving as a low energy bandpass filter below the Cu L-edge at 933 eV. A high resolution grating spectrometer is used to measure the transmission of a candidate filter with an intense laser-produced x-ray backlighter developed at the Lawrence Livermore National Laboratory Jupiter Laser Facility Janus. The methodology and discussion of the observed fine structure above the Cu L-edge will be presented.  相似文献   

6.
We describe the design and current performance of the backscattering silicon spectrometer (BASIS), a time-of-flight backscattering spectrometer built at the spallation neutron source (SNS) of the Oak Ridge National Laboratory (ORNL). BASIS is the first silicon-based backscattering spectrometer installed at a spallation neutron source. In addition to high intensity, it offers a high-energy resolution of about 3.5 μeV and a large and variable energy transfer range. These ensure an excellent overlap with the dynamic ranges accessible at other inelastic spectrometers at the SNS.  相似文献   

7.
The characteristics of the silicon matrix which is the main charge detector in the ATIC balloon experiment are reported. The ATIC spectrometer was designed to measure the elemental composition and energy spectra of primary cosmic rays in an energy range of 1010to 1013eV with individual charge resolution from protons to iron under high albedo conditions from the calorimeter.  相似文献   

8.
Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3×10(-7)?count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.  相似文献   

9.
SPHERES is a third-generation neutron backscattering spectrometer, located at the 20 MW German neutron source FRM II and operated by the Ju?lich Centre for Neutron Science. It offers an energy resolution (fwhm) better than 0.65 μeV, a dynamic range of ±?31 μeV, and a signal-to-noise ratio of up to 1750:1.  相似文献   

10.
When coupled in the image mode to a VG-HB501 microscope, the spectrometer designed by O. Krivanek and manufactured by Gatan Inc. is well suited for resolving analytical problems with a high spatial resolution. It actually records energy loss spectra from areas as small as 0.5 nm with a typical energy resolution of 1 eV over the energy loss range and with a good efficiency in collecting inelastic electrons. During the last few months, this high performance combination of microscope and spectrometer has been used to investigate (a) detection limits in EELS which are presently estimated of the order of ten atoms in a test situation such as metallic clusters deposited on a very thin carbon layer; (b) quantitative chemical analysis of representative nanovolumes of complex oxide specimens, emphasizing several aspects of elemental segregation in the neighborhood of grain boundaries and within vitreous areas; (c) changes of fine structures close to the K-oxygen threshold, due to different bonding states; and (d) efficient Z-contrast imaging modes on sections of embedded biological material without metallic staining.  相似文献   

11.
In this article, a novel time-of-flight spectrometer for two-electron-emission (e,2egamma,2e) correlation spectroscopy from surfaces at low electron energies is presented. The spectrometer consists of electron optics that collect emitted electrons over a solid angle of approximately 1 sr and focus them onto a multichannel plate using a reflection technique. The flight time of an electron with kinetic energy of Ekin approximately 25 eV is around 100 ns. The corresponding time- and energy resolution are typically approximately 1 ns and approximately 0.65 eV, respectively. The first (e,2e) data obtained with the present setup from a LiF film are presented.  相似文献   

12.
A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60°-88°. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu Kα(1) line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.  相似文献   

13.
Newbury DE 《Scanning》2005,27(5):227-239
A third-generation silicon drift detector (SDD) in the form of a silicon multicathode detector (SMCD) was tested as an analytical x-ray spectrometer on a scanning electron microscope. Resolution, output count rate, and spectral quality were examined as a function of the detector peaking time from 8 micros to 250 ns and over a range of input count rate (dead time). The SDD-SMCD (50 mm2 active area) produced a resolution of 134 eV with a peaking time of 8 micros. The peak width and peak channel were nearly independent of the input count rate (at 8 micros peaking time, the peak width degradation was 0.003 eV/percent dead time and peak position change was -0.7 eV over the dead time range tested). Maximum output count rates as high as 280 kHz were obtained with a 500 ns peaking time (188 eV resolution) and 500 kHz with a 250 ns peaking time (217 eV resolution). X-ray spectrum imaging was achieved with a pixel dwell time as short as 10 ms (with 1.3 ms overhead) in which a 2048 channel (10 eV/channel) spectrum with 2-byte intensity range was recorded at each pixel (scanned at 128 x 128). With a 220 kHz output count rate, a minor constituent of iron (present at a concentration of 0.04 mass fraction or 4 weight %) in an aluminum-nickel alloy could be readily detected in the x-ray maps derived from the x-ray spectrum image database accumulated in 185 s.  相似文献   

14.
针对上海光源X射线吸收精细结构光谱仪对灵敏度和分辨率的要求,研制了三晶体多轴同步辐射X射线荧光光谱仪。其采用一台双晶单色器提供实验X射线,用3块凹面晶体构成系统主体色散结构,并在竖直平面内组成相交的罗兰圆实现荧光分析,可实现10°范围内的布拉格角变化。光谱仪通过高精度控制驱动设备使位移平台实现了3块晶体的4轴联动和总台的2轴联动,其中对位移平台的各轴精度达到了单步长移动25nm,可以实现高分辨率的三维扫描工作。编写了探测器的驱动软件,提高了驱动器的测试灵敏度和分辨率。最后,利用国际通用的实验物理控制系统——EPICS(Experiment Physics and Industrial Control System)完成了整个系统软件的设计,实现了系统各部分的精确控制、自动测量、数据分析和结果显示与存储等功能,构成了一套完整的基于同步辐射光源的高精度高分辨率X射线荧光光谱分析系统。采用钴元素作为测试样品进行了分析实验,结果显示:该光谱仪单次测量时间小于1.5s,测试精度达到0.4eV,分辨率为0.1eV。光谱仪可以完成对样品荧光的采集和分析,操作时间、精度、分辨率和重复性等性能指标均优于现有国内、外设备,目前已成功应用于上海光源XAFS线站的各项科学实验中。  相似文献   

15.
A curved-crystal x-ray emission spectrometer has been designed and built to measure 2-5 keV x-ray fluorescence resulting from a core-level excitation of gas phase species. The spectrometer can rotate 180 degrees, allowing detection of emitted x rays with variable polarization angles, and is capable of collecting spectra over a wide energy range (20 eV wide with 0.5 eV resolution at the Cl K edge) simultaneously. In addition, the entire experimental chamber can be rotated about the incident-radiation axis by nearly 360 degrees while maintaining vacuum, permitting measurements of angular distributions of emitted x rays.  相似文献   

16.
In this paper, we propose a numerical method which can routinely improve the energy resolution down to 0.2-0.3eV of electron energy-loss spectra acquired in a transmission electron microscope. The method involves measurement of the point-spread function (PSF) corresponding to the spectrometer aberration and to the incident energy spread, and then an inversion of this PSF so as to restore the spectrum. The chosen algorithm is based on an iterative calculation of the maximum likelihood solution known to be very robust against small errors in the PSF used. Restorations have been performed on diamond and graphite C-K edges acquired with an initial energy resolution of around 1eV. After reconstruction, the sharp core exciton lines become clearly visible for both compounds and the final energy resolution is estimated to be about 200-300meV. In the case of graphite, restorations involving both energy resolution and angular resolution have been successfully conducted. Finally, restorations of Fe L(2,3) and O-K edges measured for various iron oxides will be shown.  相似文献   

17.
The energy resolution of an energy dispersive spectrometer (EDS) equipped with an ultrathin window (UTW) and mounted at a high take-off angle (72 degrees) on a transmission electron microscope has been studied under a variety of operating conditions. The spectrometer resolution is close to that specified by the manufacturer, up to count rates of 400 cps. Above 400 cps the resolution deteriorates rapidly, and the MCA dead time and zero width increase. Above 10 keV, the height of the background is much greater than expected for bremsstrahlung and shows the shape which has previously been attributed to backscattered electron flux into the detector. It is postulated that the deterioration in resolution with count rate is caused by backscattered electrons reaching the detector through the UTW.  相似文献   

18.
19.
A new laboratory x-ray spectrometer for surface-sensitive extended x-ray absorption fine structure [(S)EXAFS] and surface-sensitive x-ray absorption near-edge structure [(S)XANES] measurements is described. The spectrometer employs a 12 kV mA rotating anode generator. It has a monochromator equipped with a set of exchangeable curved crystals of Johann or Johansson type with different cell parameters, orientations, and Rowland radii. The computer controlled movement system based on nine stepping motors allows all the main elements of the spectrometer to be positioned freely relative to the x-ray source and gives an opportunity to use sophisticated scanning modes (for example, a mode with a focus spot position on a sample surface instead of an exit slit). The whole x-ray beam line is completely enclosed in a vacuum chamber that is directly connected to the x-ray generator, thereby preventing the absorption of x rays in the air. This layout allows a wide x-ray photon energy range from a few keV up to dozens of keV. A registration of x rays transmitted through the sample with proportional counter- and photoelectrons emitted from the sample with channeltron is used to carry out bulk- and surface-sensitive measurements, respectively. Using a 25 x 200 kV mA power regime of a rotating anode x-ray generator, a photon flux of 2.5 x 10(5) counts/s was registered at the Cu K edge, where the energy resolution was about 5 eV. High near surface sensitivity is demonstrated by the EXAFS spectra of Cu K and Hf LIII edges measured from 3 nm Cu and Hf oxide films.  相似文献   

20.
近年来,挥发性有机物(VOCs)快速、在线分析的应用需求促进了各类VOCs在线分析质谱仪的发展。本研究自行研制基于膜进样技术的小型紫外光电离飞行时间质谱仪,并阐述设计原理、性能表征及其对工作场所VOCs的检测应用。仪器采用聚二甲基硅氧烷(PDMS)作为进样界面,既保证了仪器的真空,又起到富集VOCs并降低检出限的作用。电离源使用发射10.6 eV光子的氪灯作为光源,可电离低于10.6 eV电离能的VOCs,并产生分子离子峰,这一特性便于谱图识别与高通量分析。飞行时间质量分析器采用小型化设计,总长度小于360 mm。结果表明,该仪器在m/z 170处全高半峰宽(FWHM)分辨率为2 000,苯、甲苯、对二甲苯的检出限在5×10-10~3×10-9 mol/mol之间。将该仪器用于工作场所中苯系物成分分析,取得了良好的靶向分析结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号