首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用冷金属过渡加脉冲(CMT+P)电弧增材制造4043铝合金薄壁件,对比了不同工艺参数下薄壁件的成形性能,研究了成形性能良好薄壁件的组织与拉伸性能,并与CMT工艺下的进行了对比。结果表明:CMT+P工艺下,当焊接速度为8 mm·s-1和送丝速度4 m·min-1时,薄壁件的成形性能最好,且其成形效果接近CMT工艺下的; CMT+P工艺下薄壁件的单层组织由焊道上层的细晶区和焊道下层的粗晶区组成,焊道间存在穿过界面生长的粗大柱状枝晶,CMT工艺下的显微组织为分布均匀的细小柱状晶; CMT+P工艺下薄壁件的拉伸性能优于CMT工艺下的; CMT+P工艺下横向和纵向拉伸试样断裂方式均为韧性断裂,横向与纵向抗拉强度各向异性百分比仅为4%,说明薄壁件的力学性能不存在各向异性。  相似文献   

2.
采用机器人辅助冷金属过渡电弧增材制造技术制备五层十五道结构的H13钢块体,研究了沉积块体的表面质量、显微组织和力学性能。结果表明:H13钢块体表面无宏观裂纹;块体主体区组织为晶粒取向均匀的针状马氏体,搭接区组织由晶粒取向杂乱的针状马氏体和不规则铁素体组成;块体主体区的平均显微硬度为479HV,远高于退火态H13钢的(254HV),而搭接区因存在铁素体,其硬度明显降低,平均值仅为381HV;冷金属过渡电弧增材制造H13钢块体的整体拉伸性能优于退火态H13钢的。  相似文献   

3.
冷金属过渡(Cold metal transfer,CMT)电弧增材制造技术具有熔敷效率高、热输入低、成形稳定等优点,在大尺度构件直接成形领域应用前景广阔.然而,其成形过程熔池热-流等物理场演变机理尚不明确,且很难通过试验手段获得.基于动网格技术,建立了二维CMT电弧增材制造热-流场数值模型.模型中,采用流体体积法追踪...  相似文献   

4.
在不同沉积路径下采用冷金属过渡电弧增材制造技术制备了H13钢成形件,基于热-弹塑性有限元法对成形件的热历程进行了分析,并通过试验研究了成形件的显微组织和硬度。结果表明:同向和双向路径沉积得到5层单道和单层5道成形件的热历程基本一致,双向沉积5层单道成形件第3层中间点的峰值温度远高于双向沉积单层5道成形件第3道中间点,5层单道成形件的热累积效应更明显;5层单道成形件的板条状马氏体组织比单层5道成形件的粗大;同向沉积5层单道成形件在同一高度上的硬度略高于双向沉积成形件,同向沉积和双向沉积单层5道成形件在水平方向的硬度分布基本相同,5层单道成形件的平均硬度略低于单层5道成形件。  相似文献   

5.
电弧增材制造技术可以缩短生产周期,降低成本,实现铝合金的快速成形,但存在结构内部含有较多气孔及晶粒粗大的问题。热丝辅助电弧增材制造(HWAAM)可以有效降低气孔率和细化晶粒,进一步提高电弧增材制造Al-Cu-Mg-Ag合金的性能。采用热丝电弧增材制造技术制备了Al-Cu-Mg-Ag耐热铝合金,利用拉伸试验、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等实验方法,研究了电弧增材制造Al-Cu-Mg-Ag铝合金的气孔缺陷、显微组织和力学性能。结果表明,与冷丝成形合金相比,热丝辅助电弧增材制造Al-Cu-Mg-Ag合金气孔率降低25%,气孔球形度增加,空间分布较为均匀;同时晶粒尺寸降低30%,晶粒形貌趋于等轴晶化。冷丝结构件抗拉强度为218 MPa,屈服强度为134 MPa,延伸率为3.2%,使用热丝电弧增材制造后,力学性能提高,其抗拉强度提升至242 MPa,屈服强度提高至148 MPa,延伸率4.2%。最后,分别采用固溶+时效和人工时效热处理工艺,进一步改善了热丝辅助成形Al-Cu-Mg-Ag合金的力学性能。固溶与时效热处理后抗拉强度达到368 MPa,延伸率下降至0.5%,时效热...  相似文献   

6.
利用有限元分析软件ABAQUS使用生死单元法建立冷金属过渡(CMT)电弧增材制造单道10层5183铝合金模型,模拟分析了增材制造过程中温度场的分布和变化规律,并进行试验验证;采用该模拟方法研究了增材制造路径(单向和交叉路径)、层间冷却时间(20,40,60 s)和焊接速度(400,450,500 mm·min-1)对温度场的影响。结果表明:模拟得到在CMT电弧增材制造过程中基板某点的热循环曲线的变化趋势与试验结果基本一致,且峰值温度和波谷温度与试验结果的相对误差均不大于8.93%,验证了模型的准确性。随着堆焊层数的增加,熔池峰值温度升高,熔池区域变大;单向路径增材制造会在试样收弧端产生较严重的热积累,而交叉路径可以减弱热积累效应;层间冷却时间越长,焊道中点的峰值温度越低,且降低幅度随冷却时间的延长而逐渐减弱;焊道的峰值温度和波谷温度随焊接速度的增加而降低。  相似文献   

7.
研究了GH4099高温合金电弧增材制造材料的显微组织及力学性能,结果表明:GH4099高温合金电弧增材制造过程中材料流动性较差,需采用He气进行保护才能满足成形需求;电弧增材制造组织呈现出较为明显的各向异性,其中垂直于增材方向呈现出连续的列状枝晶,而平行于增材方向则呈现出等轴晶组织,在等轴晶内部存在着树枝晶亚结构,大量γ′强化相及MC碳化物弥散分布在等轴晶晶界和晶粒内部;经常温与900℃高温力学测试,GH4099高温合金电弧增材制造材料抗拉强度和常温断后延伸率均满足GB/T 14996—2010《高温合金冷轧板》标准要求,但900℃高温断后延伸率低于标准要求。  相似文献   

8.
采用电弧增材制造工艺成形GH4169合金,研究了不同均匀化工艺条件对沉积态GH4169合金微观组织的影响。研究结果显示:当均匀化热处理温度为1 120℃时,随着保温时间的延长,沉积态柱状晶逐渐转变为等轴晶,平均晶粒尺寸呈逐渐长大趋势,Laves相体积分数逐渐减小,在保温90 min后,平均晶粒尺寸长大至178.9μm, Laves相完全溶解;当均匀化热处理保温时间为1 h时,随着热处理温度的升高,晶粒平均尺寸逐渐长大,Laves相体积分数逐渐减小,在热处理温度为1 200℃时,Laves相体积分数降低至0.64%,平均晶粒尺寸长大至170.35μm,此时沉积态柱状晶已完全转化为等轴晶。最终确定均匀化热处理参数为:热处理温度1 120℃,保温时间90 min。  相似文献   

9.
冷金属过渡(CMT)电弧增材制造技术具有沉积效率高、制造成本低等优势,在航空用大尺寸构件的快速成型领域应用前景广阔。对于电弧增材制造大型构件需采用大电流来进一步提高沉积效率,但在此高电流模式下电弧放电过程对熔滴过渡行为的影响机理尚不明确。因此,本研究采用高速摄像仪观察了电弧增材制造过程中电弧形态及熔滴过渡行为,同时通过建立电弧模型及熔滴过渡模型,分析了在不同电流波段及工艺参数下熔滴过渡频率及熔滴尺寸变化规律,最终揭示了电弧放电过程中电流密度、洛伦兹力等物理因素对熔滴过渡的作用机理。结果表明,电弧宽度与洛伦兹力决定熔滴在电弧放电过程中的受力大小,进而决定熔滴尺寸及其过渡频率。随着送丝速度从5.5 m/min增大至7.0 m/min时,电流峰值持续时间增加了1倍左右,同时电弧宽度与电流密度的随之增加,使得熔滴过渡过程中电磁力上升,熔滴尺寸下降14%且射滴过渡频率增加了3~4倍。当瞬时电流进入熄弧阶段时,熔滴过渡形式转变为短路过渡。随着送丝速度的增加,短路过渡频率从29 Hz减少至20 Hz。  相似文献   

10.
针对冷金属过渡(CMT)电弧增材制造技术存在的表面成形质量差、制件内部易形成孔隙等冶金缺陷、微观组织与性能调控困难等问题,从控形与控性两个方面出发,对CMT电弧增材制造技术研究进展进行了综述.首先,对CMT技术的原理及特点进行了分析与梳理;然后,对CMT电弧增材制造技术在"形"与"性"方面的调控方式进行了总结,具体阐述...  相似文献   

11.
电弧增材制造具有材料利用率高、制造效率高、制造成本低等优势,适合制造大型复杂航空薄壁构件。目前,交叉桁条结构电弧增材制造的路径规划、成形形貌控制、组织性能差异性等方面缺乏系统研究。针对交叉桁条结构提出了一种新的分层切片及路径规划方法,解决了桁条交叉区域余高过大导致的制造精度不足问题。开展了电弧增材制造2319铝合金交叉桁条不同区域的晶粒形态、元素分布、拉伸性能、断口形貌等检测与分析,结果表明,电弧增材制造2319铝合金交叉桁条结构不同区域的晶粒形态及尺寸呈现明显差异,致使桁条顶部的平均抗拉强度值与中部、底部相比高出20%左右。在拉伸断口的韧窝中存在大量θ(Al2Cu)颗粒相,该非共格析出相增大了晶格畸变能并且提升位错阻力,使晶体滑移难以进行,最终材料的强度显著提高。  相似文献   

12.
研究电弧熔丝增材制造5356铝合金运载火箭过渡端框工艺,探讨不同热输入与热处理温度对堆积金属组织与性能的影响,增材制造了过渡端框模拟件。结果表明,5356铝合金的显微组织主要为α(Al)相基体与β(Al8Mg5)增强相。增材制造过程中的热输入从113.4 J/mm增加至356.4 J/mm时,5356铝合金中α(Al)相晶界处的粗大β(Al8Mg5)相增多,导致金属抗拉强度、延伸率均显著降低。固溶处理有利于提高5356铝合金的力学性能。固溶处理温度由350℃提高至450℃时,5356铝合金中的α(Al)相晶粒细化,其晶内的细粒状β(Al8Mg5)相增多并呈弥散分布,且α(Al)相晶界处的β(Al8Mg5)相减少,使得细晶强化与沉淀强化效果逐渐显著,5356铝合金强度及韧性提高。根据5356铝合金过渡端框的结构特点,将其划分为底部支撑圆环、环-扇形组、环-加强筋组3个区域依次增材制造。为了减少成形件的变形,改变底部支撑圆环增材制造的起弧位置,环-扇形组采用对称分块成形。对成形的5356铝合金过渡端框模拟件进行三维尺寸测量,结构误差在3.58 mm之内,具有较高的成形精度。  相似文献   

13.
为了跟上国内外电弧增材制造技术迅猛发展势头,采用从设备研制到实验验证的方法路线,介绍了一种基于机器人的增材制造系统的硬件选择及软件设计,并利用该增材制造系统增材制造出耐磨钢直臂件,对增材件性能进行测试。结果表明,该制造系统具有修改增材制造工艺参数方便、成形效果良好、成型精度较高等优点。项目开展的基础性研究对于金属丝材电弧直接制造系统的开发和技术的推广及应用具有重要的理论参考和实际指导意义。  相似文献   

14.
利用基于CMT焊接技术的增材制造系统,研究层间冷却温度对多层单道增材制造件的宏观结构、金相组织、力学性能的影响。结果表明,一定参数范围内,当送丝速度、熔覆速度、电流电压一定时,层间温度越高,熔覆层塌陷越严重,影响增材构件的成型。由于前熔覆层的预热作用,晶间铁素体生长时间更充分,变得更加粗大,使得构件的拉伸强度下降,且拉伸试样断裂类型为韧性断裂。试验研究表明,层间温度≤150℃时,可以得到晶粒较细、性能较好的构件。  相似文献   

15.
16.
针对铝合金CMT电弧增材制造技术,采用5356铝合金焊丝在Ar+He二元混合气体保护下进行CMT机器人自动化增材制造实验,研究不同Ar+He混合气比例对成形试样尺寸精度和力学性能的影响。对试样尺寸精度、气孔率及拉伸性能进行了分析。结果显示:表面粗糙度随氦气比例的增加先增加后减小。当氦气比例增加到75%后,不仅可以有效消除0.2 mm以上的宏观气孔,也可以消除显微气孔。力学性能显示抗拉强度同样随氦气比例的增加先增大后减小,70%Ar+30%He时抗拉强度达到最大值252.5 MPa。  相似文献   

17.
基于冷金属过渡(CMT)电弧增材制造技术,以2319铝合金为堆积材料,恒定送丝速度与不同焊接速度得到6组单层焊道,分别采用标准曲线对单层焊道截面轮廓进行拟合,结果表明抛物线和圆弧曲线的拟合效果均较好。在损失较小模型精度的情况下简化搭接模型,基于抛物线曲线建立单层多道斜顶搭接模型,理论推导最优搭接间距为0.715倍单道宽度。为了验证模型的正确性,采用不同搭接间距成形单层两道进行试验验证,并将其与传统的平顶搭接模型进行对比。试验结果表明斜顶模型更加符合CMT电弧增材制造工艺过程。当搭接间距确定后,研究表明当单层焊道成形高度降低时,搭接表面不平度随之减小,有利于后续多层多道堆积成形。基于优化后的搭接参数,成形多层多道样件,成形形貌良好,三个方向的拉伸力学性能表现出各向异性。  相似文献   

18.
在不同热输入(10.66 k J/cm、13.34 k J/cm、15.70 k J/cm)下对ER130S-G低合金高强钢进行GMAW增材试验,研究热输入对增材结构显微组织、室温拉伸性能的影响。结果表明:增材结构组织可分为受热区和未受热区,受热区组织主要由针状铁素体和粒状贝氏体组成,未受热区主要为粗大的柱状晶。随着热输入的增加,粒状贝氏体含量减少,针状铁素体增加,同时出现部分板条马氏体。室温下抗拉强度和断后伸长率均呈先增大后减小的趋势,在热输入为13.34 k J/cm时,力学性能最佳,拉伸断口均为韧性断口。  相似文献   

19.
基于电弧增材制造(Wire arc additive manufacturing, WAAM)技术,以NiTi丝(Ni 50.50 at.%)为堆积材料制造形状记忆合金薄壁构件,研究其组织成分、相变特征和力学性能。结果表明,由于不同的热循环条件,沿试样高度方向上每道沉积层微观结构不同,第一沉积层为较大的等轴晶,随着热量累积,晶粒生长趋向为更细小的等轴形态,层间为柱状晶。室温下,试样是奥氏体相(Ni51.10at.%),与丝材相比,电弧增材制造的构件硬度较高且具有更宽的温度变化范围和相变滞后现象。试样拉伸强度约为611.30MPa,延伸率约为19.50%,具有较好的断裂韧性。试样在第一次加载-卸载循环时塑性应变仅为1.01%,8个循环后塑性应变趋于稳定,约为2.68%。  相似文献   

20.
随着增材制造技术的创新和不断发展,钛合金电弧增材制造广泛应用于各个领域,涉及航空航天、船舶、汽车、生物医疗、化工以及模具制造等.当前,很多研究学者对钛合金增材制造技术进行了深入研究,在钛合金电弧增材制造研究方面已取得了一定成果.基于此,综述当前国内外钛合金电弧增材制造技术研究现状,并对钛合金电弧增材制造技术的运用以及未...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号