首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
High temperature deformation behaviors of a high Nb containing TiAl alloy   总被引:1,自引:0,他引:1  
《Intermetallics》2007,15(5-6):668-674
In the present paper, high temperature tensile and creep behaviors of Ti–45Al–9(Nb,W,B,Y) alloy with duplex (DP) microstructure were investigated. In addition to tensile tests at 815 °C and a strain rate range of 1 × 10−4 s−1−1 × 10−3 s−1 and tensile, creep tests at 760 °C and 815 °C under the stress of 180 MPa, the microstructure evolutions during tensile and creep tests were studied. The results show that high temperature high Nb containing TiAl alloy with DP microstructure has a good balance between ductility and strength and intermediate creep resistance. The tensile properties have the strain rate dependence, and ultimate tensile strength (UTS) and yield strength (YS) vs. strain rate obey a single-logarithm linear relationship. Minimum creep rate is affected by the test temperature and stress. Using loading change experiment a stress exponent of 4.3 is determined. DP microstructure is unstable after long-term exposure at high temperatures, and the spheroidization of lamella and recrystallization along grain boundaries occur during the high temperature deformation. It is assumed that the diffusion-assisted climb of dislocations might be the controlling mechanism at the minimum creep rate stage.  相似文献   

2.
Nanocrystalline iron containing a certain fraction of coarse grains with nanosized oxide dispersoids has been processed by mechanically milling Fe powder and subsequent spark plasma sintering. Sintered samples exhibited a high tensile strength of 2100 MPa with 5% ductility; by optimizing the sintering conditions, it was possible to tune the strength–ductility balance. The optimally sintered material showed a tensile strength of 1500 MPa and 15% elongation. The microstructure consists of nanograined (<100 nm) as well as coarse-grained regions (>1 μm) with uniform dispersion of nanosized chromium oxide particles (~10 nm). The strength and elongation show strong dependence on the volume fraction of the coarse grains, and the high strength can be attributed to the ultrafine grain size of the nanograined regions and precipitation hardening by the oxide dispersoids. The ductility is considered to be due to the presence of coarse grains.  相似文献   

3.
H.T. Wang  N.R. Tao  K. Lu 《Acta Materialia》2012,60(9):4027-4040
An austenitic Fe–25Mn steel with a low stacking fault energy was subjected to dynamic plastic deformation (DPD) followed by thermal annealing. The as-DPD sample is structurally characterized by a mixed nanostructure consisting of nanosized grains with an average size of 43 nm and bundles of nanoscale twins (with an average twin/matrix lamella thickness of 5 nm), as well as some dislocation structures, which exhibits a high yield strength of about 1470 MPa but a limited tensile ductility. Thermal annealing leads to static recrystallization (SRX) of the nanostructures forming a hierarchical structure of nanotwinned grains embedded in microsized SRX grains, owing to the higher thermal stability of the nanotwinned bundles than that of nanosized grains. With an increasing number of SRX grains the yield strength and ultimate tensile strength drop while the tensile ductility increases. The calculated yield strength of the nanotwinned grains is about 1.5 GPa, much lower than that determined from Hall–Petch strengthening extrapolated to the nanoscale. Work hardening rates of the nanotwin grains, comparable with that of the microsized grains, are higher than that of the original coarse grained sample. The micrograined austenitic Fe–Mn samples strengthened by nanotwinned grains exhibit enhanced strength–ductility synergy in comparison with the deformed samples. A combination of a 977 MPa yield strength with a uniform elongation of 21% is achieved in the annealed samples, well above that of the deformed samples.  相似文献   

4.
The effect of cold-drawing on the tensile property and giant magneto-impedance (GMI) effect of melt-extracted Co-based amorphous microwires was evaluated through detailed analyses of the distribution of residual stress and microstructural evolution. The tensile ductility and tensile strength increased gradually with cross-sectional area reduction ratio (R) until 51%, and decreased with further deformation. The microwire with R = 51% exhibits the highest tensile ductility of 1.09% and tensile strength of 4320 MPa. Structural and thermodynamic analyses reveal that it is the mechanical deformation rather than thermal activation that induces the precipitation of nanocrystals and arrests the quick extension of shear bands leading to the enhanced ductility. Interestingly, the GMI effect also attains the maximum value of 160% at 10 MHz when R = 51% (30% larger than that of the as-cast wires), before decreasing with further cold-drawing. Such an identical evolution trend of both tensile and GMI properties can be ascribed to two underlying mechanisms: the generation of longitudinal and circumferential residual stresses and the growth of deformation-induced nanocrystals during cold-drawing. The role of residual stress is established herein not only as a trigger to accelerate the amorphous-to-nanocrystalline phase transformation but also as a decisive contributor to the mechanical and GMI performance. The unique simultaneous improvement of both mechanical and GMI properties of cold-drawn Co-based microwires opens up new possibilities for a variety of engineering applications, such as high-performance magnetic, stress and biological sensors.  相似文献   

5.
Mg-based metallic glass wires were produced via the melt-extraction technique. Their mechanical properties were evaluated by carrying out tensile tests on electrochemically polished dogbone-shaped wire samples, and their reliability was estimated using Weibull analysis. The wires exhibit a tensile strength of 675–894 MPa with a characteristic strength of 817 MPa and a Weibull modulus of 20.6. The high Weibull modulus is explained by the plastic behavior and necking of the tensile samples. The tensile tests also reveal an extended amount of homogeneous plastic deformation, which can be assigned to the circular geometry and flawless surface quality of the specimens.  相似文献   

6.
《Intermetallics》2006,14(4):456-463
The microstructural evolution of a powder metallurgy (PM) Ni3Al–8Cr (at.%) alloy reinforced with Cr particles has been correlated with its mechanical properties. The material was synthesised using rapidly solidified Ni3Al–8Cr powders which were mixed with a Cr volume fraction of 10% and milled for 20 h. Consolidation by HIP was carried out at 150 MPa for 2 h at 1250 °C. For comparative purposes the unreinforced Ni3Al–8Cr alloy was processed following the same route. After consolidation by HIP both materials show a bimodal microstructure consisting of coarse and fine grain regions in which fine particles are heterogeneously distributed. Besides Cr reinforcement, the difference between the two materials is the presence of β phase and higher volume fractions of γ+γ′ regions and α-phase precipitates in the reinforced material. The reinforced material presents the highest hardness, yield stress and the ultimate tensile strength values. The yield stress and ultimate tensile strength of the reinforced material at room temperature is 1286 and 1335 MPa, respectively. The strength of the composite is determined by the strength of the Cr particles and the good bonding between the matrix and Cr reinforcement. Although the ductility loss as the temperature increases is not suppressed, an improvement in ductility is obtained at temperatures above 500 °C compared with the unreinforced material.  相似文献   

7.
Ultrafine-grained materials produced by different severe plastic deformation methods show very high strengths but their tensile ductility is often very low. In the present work, we demonstrate an approach for retaining high strength while recovering ductility in a Cu–3 at.% Ag alloy through cold rolling and short-time annealing. X-ray line profile analysis of cold-rolled and annealed samples reveals the development of a heterogeneous solute atom distribution due to the dissolution of nanosized Ag particles in some regions of the matrix. In regions with higher solute (Ag) content, the high dislocation density present following rolling is stabilized, while in other volumes the dislocation density is decreased. High-resolution scanning electron microscopy confirms the presence of regions of varying Ag content in the matrix. Microstructure analysis of the rolled and annealed samples revealed bimodal grain size, dislocation density and solute Ag distributions as well as nanosized Ag precipitation. The as-rolled samples exhibit high tensile strengths of ~600–700 MPa with negligible uniform elongation (~1%). After short-time annealing the strength decreases only slightly to ~550–620 MPa with significant improvement in uniform elongation (from 1 to 10%); this is mainly attributed to the bimodal microstructure.  相似文献   

8.
Fully massively transformed samples of Ti46Al8Nb and Ti46Al8Ta have been HIPped (hot isostatically pressed) in the (α + γ) phase field in order to generate a fine convoluted microstructure and their tensile properties compared with those of samples with coarse lamellar microstructure. It has been found that the yield strengths and ductilities of the microstructurally refined samples were significantly improved with respect to those with coarse microstructures. The proof stresses of the microstructurally refined samples of the Ta- and Nb-containing alloys were almost identical (550 MPa) but the ductility in the Ta-containing alloy is about double that of the Nb-containing alloy, reaching values of up to 1.1% plastic strain. However, there is significant scatter in the elongation in both alloys, which in the case of the Ta-containing alloy has been shown to be associated with segregation which hinders the massive transformation and leads to the formation of some large grains. These observations are discussed in terms of the practicality of using massively transformed and heat-treated cast alloys in engineering components and in terms of the factors controlling the tensile behaviour.  相似文献   

9.
《Acta Materialia》2008,56(5):1056-1064
Effects of irradiation at temperatures ⩽200 °C on tensile stress parameters are analyzed for dozens of body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close packed (hcp) pure metals and alloys, focusing on irradiation hardening, strain hardening, and relationships between the true stress parameters. Similar irradiation-hardening rates are observed for all the metals irrespective of crystal type. Typically, irradiation-hardening rates are large, in the range 100–1000 GPa/dpa, at the lowest dose of <0.0001 dpa and decrease with dose to a few tens of MPa/dpa or less at about 10 dpa. However, average irradiation-hardening rates over the dose range of 0 dpa−DC (the dose to plastic instability at yield) are considerably lower for stainless steels due to their high uniform ductility. It is shown that whereas low-temperature irradiation increases the yield stress, it does not significantly change the strain-hardening rate of metallic materials; it decreases the fracture stress only when non-ductile failure occurs. Such dose independence in strain-hardening behavior results in strong linear relationships between the true stress parameters. Average ratios of plastic instability stress to unirradiated yield stress are about 1.4, 3.9, and 1.3 for bcc metals (and precipitation hardened IN718 alloy), annealed fcc metals (and pure Zr), and Zr-4 alloy, respectively. Ratios of fracture stress to plastic instability stress are calculated to be 2.2, 1.7, and 2.1, respectively. Comparison of these values confirms that the annealed fcc metals and other soft metals have larger uniform ductility but smaller necking ductility when compared to other materials.  相似文献   

10.
A rotating target consisting of helium-cooled tungsten has been chosen for the European Spallation Source (ESS) facility to be built in Lund. Thermo-mechanical cycling due to the incidence of the proton beam every 2 s on any given tungsten slab in the rotating wheel could lead to crack formation and failure over the lifetime of the target. This work reports tensile and fatigue data obtained at room temperature for the Densimet 185 alloy in the non-irradiated condition. Methods for extracting relevant parameters from fatigue curves with small sets of data are discussed. Fatigue results show a large spread of data for which the application of such methods is challenging.Stress controlled fatigue testing was carried out in this study with mean stress approaching zero and amplitudes in the range 250 to 450 MPa, with 50 MPa increments. A frequency of 25Hz was employed and the fatigue tests lasted until failure was registered or until the upper limit of 2 × 106 cycles was reached. No failure due to fatigue occurred in specimens subjected to stress amplitudes below 300 MPa. Microstructural and fractographic studies on the fatigue samples using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) showed that the samples had low porosity, large and nearly spherical tungsten grains, and with a fairly uniform distribution of the ductile phase rich in nickel and iron. However, bonding between tungsten grains in some areas was found to be inadequate. Intergranular fracture was predominant in the specimens at room temperature. Data for the D185 alloy are compared to those for IT180 and D176 alloys obtained in a previous study and strategies for improving the fatigue strength are discussed.  相似文献   

11.
The microstructure and mechanical properties of a 2024 Al alloy subjected to different levels of cold-rolling at room temperature and their evolution upon ageing at 453 K were investigated by means of microhardness measurements, tensile tests and transmission electron microscopy. The cold-worked 2024 Al alloy showed double-peak age strengthening behavior. After ageing for 120 min, the samples reached the first peak strength with quite low ductility. However, simultaneous high strength and ductility were achieved by prolonged ageing of 720 min. The first strengthening peak is due to the precipitation of fine S′ precipitates. The optimized mechanical properties of high strength and suitable ductility are attributed mainly to the precipitation of Ω-phase particles at the expense of S′ precipitates after ageing for 720 min. The Ω precipitates are effective in dislocation pinning and accumulation, and they can undergo plastic deformation to some extent, leading to simultaneously improved tensile strength, work-hardening ability and ductility. The present finding sheds light on the development of processing techniques to optimize the mechanical properties of 2024 Al alloy.  相似文献   

12.
The intergranular thermal residual stresses in texture-free solid polycrystalline beryllium were determined by comparison of crystallographic lattice parameters in solid and powder samples measured by neutron diffraction during cooling from 800 °C. The internal stresses are not significantly different from zero >575 °C and increase nearly linearly <525 °C. At room temperature, the c axis of an average grain is under ~200 MPa of compressive internal stress, and the a axis is under 100 MPa of tensile stress. For comparison, the stresses have also been calculated using an Eshelby-type polycrystalline model. The measurements and calculations agree very well when temperature dependence of elastic constants is accounted for, and no plastic relaxation is allowed in the model.  相似文献   

13.
《Intermetallics》2007,15(9):1172-1182
Five quaternary Fe–Al–B–M (M = Ti, Hf, Zr, V, W) alloys based on Fe3Al with strengthening boride precipitates were produced by vacuum induction melting. The alloys were investigated with respect to their microstructure and mechanical behaviour up to 1000 °C. The mechanical properties were determined by tensile tests, 4-point-bending tests, high-temperature compression tests up to 1000 °C as well as creep tests at 650 and 750 °C. Microstructural and phase analysis were carried out by light optical microscopy, scanning electron microscopy, X-ray diffraction analysis and differential thermal analysis. The alloys were tested in the as-cast state, after homogenisation at 1200 °C for 48 h and after annealing at 800 °C for 624 h. Compared to a corresponding binary alloy the examined alloys exhibit significantly improved mechanical high-temperature properties as well as stable microstructures without considerable loss of ductility.  相似文献   

14.
Creep tests on Ni-based single-crystal superalloy sheet specimens typically show greater creep strain rates and/or reduced strain or time to creep rupture for thinner specimens than predicted by current theories, which predict a size-independent creep strain rate and creep rupture strain. This size-dependent creep response is termed the thickness debit effect. To investigate the mechanism of the thickness debit effect, isothermal, constant nominal stress creep tests were performed on uncoated PWA1484 Ni-based single-crystal superalloy sheet specimens of thicknesses 3.18 and 0.51 mm under two test conditions: 760 °C/758 MPa and 982 °C/248 MPa. The specimens contained initial microvoids formed during the solidification and homogenization processes. The dependence of the creep response on specimen thickness differed under the two test conditions: at 760 °C/758 MPa there was a reduction in the creep strain and the time to rupture with decreasing section thickness, whereas at 982 °C/248 MPa a decreased thickness resulted in an increased creep rate even at low strain levels and a decreased time to rupture but with no systematic dependence of the creep strain to rupture on specimen thickness. For the specimens tested at 760 °C/758 MPa microscopic analyses revealed that the thick specimens exhibited a mixed failure mode of void growth and cleavage-like fracture while the predominant failure mode for the thin specimens was cleavage-like fracture. The creep specimens tested at 982 °C/248 MPa in air showed the development of surface oxides and a near-surface precipitate-free zone. Finite-element analysis revealed that the presence of the alumina layer at the free surface imposes a constraint that locally increases the stress triaxiality and changes the value of the Lode parameter (a measure of the third stress invariant). The surface cracks formed in the oxide scale were arrested by further oxidation; for a thickness of 3.18 mm the failure mode was void nucleation, growth and coalescence, whereas for a thickness of 0.51 mm there was a mixed mode of ductile and cleavage-like fracture.  相似文献   

15.
16.
The deformation mechanisms and associated microstructure changes during tensile loading of an annealed twinning-induced plasticity steel with chemical composition Fe–20Mn–3Si–3Al–0.045C (wt.%) were systematically investigated using in situ time-of-flight neutron diffraction in combination with post mortem transmission electron microscopy (TEM). The initial microstructure of the investigated alloy consists of equiaxed γ grains with the initial α′-phase of ~7% in volume. In addition to dislocation slip, twinning and two types of martensitic transformations from the austenite to α′- and ε-martensites were observed as the main deformation modes during the tensile deformation. In situ neutron diffraction provides a powerful tool for establishing the deformation mode map for elucidating the role of different deformation modes in different strain regions. The critical stress is 520 MPa for the martensitic transformation from austenite to α′-martensite, whereas a higher stress (>600 MPa) is required for actuating the deformation twin and/or the martensitic transformation from austenite to ε-martensite. Both ε- and α′-martensites act as hard phases, whereas mechanical twinning contributes to both the strength and the ductility of the studied steel. TEM observations confirmed that the twinning process was facilitated by the parent grains oriented with 〈1 1 1〉 or 〈1 1 0〉 parallel to the loading direction. The nucleation and growth of twins are attributed to the pole and self-generation formation mechanisms, as well as the stair-rod cross-slip mechanism.  相似文献   

17.
A newly developed carbon-based composite, SiC ceramic bonded carbon (30 vol% SiC) was directly clad with tungsten (W) at 1700 °C by spark plasma sintering. There were no voids or cracks in the fabricated material. The adhesion strength between W and SiC/CBC is 90 MPa and 33 MPa by the bending and tensile test, respectively. The interface between W and SiC/CBC was analyzed and the cladding mechanism was discussed.  相似文献   

18.
Single crystal specimens of YZn (B2) were tested in tension at room temperature. Specimens with a [1 0 1] tensile axis orientation exhibited {0 1 1}〈1 0 0〉 primary slip and an ultimate tensile strength of 365 MPa at 3.7% elongation. Specimens with [0 0 1] and [1 1 1] tensile axis orientations showed no slip lines and fractured at a stress of 180 MPa at 3.3% and 130 MPa at 2.9% elongation, respectively. Transmission electron microscopy (TEM) examination of the Burger’s vector of dislocations in tensile tested specimens revealed 〈1 0 0〉-type dislocations. TEM analysis suggested that a secondary slip system, {0 0 1}〈1 0 0〉, may be active. Banded features with a {0 2 1} orientation were observed in deformed YZn; these may be slip traces produced by the cross-slip of 〈1 0 0〉 dislocations. Acting together, {0 1 1}〈1 0 0〉 and {0 0 1}〈1 0 0〉 slip provide only three independent slip systems, and no extra independent systems are provided by the cross-slip. This finding is consistent with the low ductility of YZn.  相似文献   

19.
《Acta Materialia》2007,55(11):3765-3770
DyCu single crystals with CsCl-type B2 structure were tensile tested at room temperature. Slip trace analysis shows that the primary slip system in DyCu with a tensile axis orientation of 〈1 1 0〉 is {1 1 0}〈0 0 1〉 and the critical resolved shear stress for {1 1 0}〈0 0 1〉 slip is 18 MPa. Slip traces were also observed from a secondary slip system, {1 1 0}〈1 1 1〉, and this slip system appears to be a key contributor to the previously reported high ductility and high fracture toughness of polycrystalline DyCu. Transmission electron microscopy determinations of the Burgers vectors of dislocations in tensile tested specimens revealed 〈1 0 0〉 and 〈1 1 1〉 dislocations, with 〈1 0 0〉-type dislocations being more abundant. The implications of these findings for the understanding of the mechanical properties of DyCu and the large family of ductile rare earth B2 intermetallics are discussed.  相似文献   

20.
《Acta Materialia》2000,48(6):1383-1395
The addition of a small amount (0.4 mass%) of B to a commercial FC20 cast iron was found to cause the formation of an amorphous phase in melt-spun ribbon and cast cylinders with a diameter of up to 0.5 mm. The structure of a melt-spun B-free FC20 alloy consisted of α-Fe, γ-Fe and Fe3C. The effectiveness of additional B is presumably due to the generation of attractive bonding nature among the constituent elements. The amorphous alloy ribbon exhibits a high tensile strength of 3480 MPa and good bending ductility. The annealing causes the formation of an amorphous phase containing α-Fe particles with a size of about 30 nm. The mixed phase alloy exhibits an improved tensile strength of 3800 MPa without detriment to good ductility. With further increasing temperature, the mixed amorphous and α-Fe structure changes to α-Fe+Fe3C+graphite through the metastable structure of α-Fe+Fe3C. The structure after annealing for 900 s at 1200 K has fine grain sizes of about 0.5 μm for α-Fe, 0.3 μm for Fe3C and 1 μm for graphite. The graphite-containing alloy exhibits high tensile strength of 1200–2000 MPa and large elongation of 5–13%. The high tensile strength and good ductility were also obtained for the 0.5 mm cylinder annealed at 1200 K. The good mechanical properties are due to the combination of fine subdivision of crack initiation sites by the homogeneous dispersion of small graphite particles and the dispersion strengthening of Fe3C particles against the deformation of the α-Fe phase. The synthesis of the finely mixed α-Fe+Fe3C+graphite alloys having good mechanical properties by crystallization of the new amorphous alloy in the melt-spun ribbon and cast cylinder forms is encouraging for the future development of a new Fe-based high-strength and high-ductility material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号