首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high resolution approach is proposed to quantitatively estimate the depth of defects buried in planar metallic structures. This approach associates a multiple signal characterization (MUSIC) algorithm with an original eddy current imager. The interactions of the eddy currents and the defects are modelled by a set of virtual magnetic sources propagating in a spherical manner up to the surface of the structure. The defect localization is carried out using the MUSIC algorithm, applied to the multi-frequency observation of the magnetic field distribution at the surface of the structure. Accurate results obtained on simulated and experimental data relative to defects buried down to 5.4 mm in an aluminium layered structure validate the approach.  相似文献   

2.
Detailed experimental studies have been carried out for the determination of optimum eddy current excitation frequencies for the defects located at different depths below the top surface of an aluminum plate. These subsurface defects were detected by using a highly sensitive superconducting quantum interference device (SQUID) based eddy current non-destructive evaluation (NDE) system. The signal to noise ratio was found to be significantly higher at the optimum excitation frequency, which depended on the depth of the defect. The optimum excitation frequencies have been evaluated for defects located at different depths from 2 to 14 mm below the top surface of the plate. The defect depth was varied in steps of 2 mm, while the overall total thickness of the stack of plates was kept constant at 15 mm. Each defect represented a localized loss of conductor volume, which was 60 mm in length, 0.75 mm in width and 1 mm in height. The experimental results show that the square root of the optimum excitation frequency is inversely proportional to the depth of defect.  相似文献   

3.
Electromagnetic Acoustic Transducers (EMATs) are a useful ultrasonic tool for non-destructive evaluation in harsh environments due to their non-contact capabilities, and their ability to operate through certain coatings. This work presents a new Rayleigh wave EMAT transducer design, employing geometric focusing to improve the signal strength and detection precision of surface breaking defects. The design is robust and versatile, and can be used at frequencies centered around 1 MHz. Two coils are used in transmission mode, which allows the usage of frequency-based measurement of the defect depth. Using a 2 MHz driving signal, a focused beam spot with a width of 1.3±0.25 mm and a focal depth of 3.7±0.25 mm is measured, allowing for defect length measurements with an accuracy of±0.4 mm and detection of defects as small as 0.5 mm depth and 1 mm length. A set of four coils held under one magnet is used to find defects at orientations offset from normal to the ultrasound beam propagation direction. This EMAT has a range which allows detection of defects which propagate at angles from 16° to 170° relative to the propagation direction over the range of 0–180°, and the setup has the potential to be able to detect defects propagating at all angles relative to the wave propagation direction if two coils are alternately employed as generation coils.  相似文献   

4.
This paper investigates the application of two source separation techniques, principal component analysis and independent component analysis, to process the data from the inspection of riveted lap joints by eddy currents. An eddy current array sensor is designed for the rapid inspection of lap-joints and used to test a set of flawed rivet configurations featuring 1–10 mm notches, buried down to a 4 mm depth. Implementation methods are proposed for processing such eddy current data by means of both the considered source separation techniques. The signal processing results obtained from the experimental data are compared in terms of source separation efficiency and detection using a receiver operating characteristic approach. In the light of this study, both the techniques appear to be efficient. However, the principal component analysis provides better defect detection results, especially for deeply buried defects.  相似文献   

5.
This work presents a method of characterising pipeline defects using a small number of radiographs taken at different angles around the pipe. The method relies on knowledge of the setup geometry and use of multiple images, and does not require calibration objects to be included in the setup. It is aimed at use in situations where access is difficult such as in subsea pipeline inspections. Given a set of radiographs, a background subtraction method is used to extract defects in the images. Using a ray tracing algorithm and knowledge of the experimental setup, the range of possible locations of the defect in 3D space is then calculated. Constraints are applied on potential defect shapes and positions to further refine the defect range. The method is tested on simulated and experimental flat bottomed hole defects and simulated corrosion patch defects with lateral and axial sizes ranging from 12.5 to 33.8 mm and thickness between 3 mm and 16 mm. Results demonstrate a good, consistent ability to calculate lateral and axial defect dimensions to within ±3 mm of the true size. Defect thickness calculations are more difficult and as such errors are more significant. In most cases defect thickness is calculated to within 4 mm of the actual value, often closer. Errors in thickness are due to overestimation, meaning the calculation could be used to place a maximum limit on potential defect size rather than as an actual estimate of the thickness. This would still be useful, for example in deciding whether a defect requires further investigation.  相似文献   

6.
Pulsed, lock-in and frequency modulated thermography are three alternative nondestructive evaluation techniques. The defect imaging performance of these techniques are compared using: matched excitation energy; the same carbon fiber composite test piece and infrared camera system. The lock-in technique suffers from “blind frequencies” at which phase images for some defects disappear. It is shown that this problem can be overcome by using frequency modulated (chirp) excitation and an image fusion algorithm is presented that enhance phase imaging of defects. The signal-to-noise ratios (SNRs) of defect images obtained by the three techniques are presented. For the shallowest defects (depths 0.25 and 0.5 mm, 6 mm diameter), the pulsed technique exhibits the highest SNRs. For deeper defects the SNRs of the three techniques are similar in magnitude under matched excitation energy condition.  相似文献   

7.
This paper describes improvements to the Nondestructive Testing (NDT) technique recently proposed, based on the use of bacterial cell suspensions to identify micro- and nano-surface defects. New bacterial strains were used with magnetic fields to improve bacteria mobility. Different materials and defect morphologies were tested, including nanoindentation defects, micro-powder injection moulding components and micro-laser welding. Nanoindentations with 0.6 µm depth and 5.3 µm side length were successfully detected. Bacterial cells allow identifying different topographic attributes of the surfaces, such as roughness. Cracks of about 0.5 µm wide and 10 µm depth in a reference test block Type 1 were successfully detected.  相似文献   

8.
A combined theoretical and experimental approach is reported using thermal-wave radar imaging (TRWI) for carbon fiber reinforced polymer (CFRP) with subsurface defects inspection. The multi-transform technique (Fourier transform, FT; Hilbert transform, HT; and cross-correlation, CC) is applied to extract the characteristics of thermal-wave signal. Experimental results indicate that the multi-transform technique of thermal-wave signal is available for detecting the subsurface defect. For the shallow defect (defect depth ≤1 mm), the delay time image of CC exhibits high contrast, and the phase image of FT has high SNR at the right frequency component. For the deep defect (defect depth 2.0 mm), the phase images of HT have both high contrast and large SNR value.  相似文献   

9.
《Acta Materialia》2007,55(13):4325-4337
A computational approach that integrates ab initio electronic structure and thermodynamic calculations is used to determine point defect stability in rutile TiO2 over a range of temperatures, oxygen partial pressures and stoichiometries. Both donors (titanium interstitials and oxygen vacancies) and acceptors (titanium vacancies) are predicted to have shallow defect transition levels in the electronic-structure calculations. The resulting defect formation energies for all possible charge states are then used in thermodynamic calculations to predict the influence of temperature and oxygen partial pressure on the relative stabilities of the point defects. Their ordering is found to be the same as temperature increases and oxygen partial pressure decreases: titanium vacancy  oxygen vacancy  titanium interstitial. The charges on these defects, however, are quite sensitive to the Fermi level. Finally, the combined formation energies of point defect complexes, including Schottky, Frenkel and anti-Frenkel defects, are predicted to limit the further formation of point defects.  相似文献   

10.
Point-focusing electromagnetic-acoustic transducers (PF-EMATs) for shear-vertical (SV) waves were developed for crack inspection of stainless-steel pipes. The transducer has improved defect detectability by accumulating SV waves generated by concentric line sources at a focal point in phase. An optimum frequency for defect detection was found to be 2 MHz, with which a crack of 0.5 mm depth near a weld was clearly detected. The EMAT exhibited defect detectability comparable to that of a conventional phased-array piezoelectric transducer, indicating that this new EMAT is highly practical for the non-contacting evaluation of stress-corrosion cracking in stainless steels.  相似文献   

11.
Multi-frequency Eddy current testing (ECT) system with high sensitive AMR sensor was developed. By subtracting the signals of two frequencies, the influence of lift off variance could be reduced. As a testing, a specimen of copper plate with grooves and slits was used to simulate the combustion chamber of liquid rocket and the defects. Three defects, with the width of 0.2 mm, the length of 4 mm and the depth of 0.2, 0.5, and 0.8 mm were made in the bottom of the grooves. Multi-frequency ECT experiments were done and the defects with the depth of 0.8 and 0.5 mm could be successfully detected.  相似文献   

12.
We propose a new method for contactless, nondestructive evaluation of moving laminated conductors, the so-called Lorentz force evaluation (LFE). The Lorentz force (LF) exerting on a permanent magnet moving relative to the specimen is measured. We propose a novel fast forward calculation of the LF based on a three-dimensional finite volume discretization of the specimen and an approximation of defects using local current distributions in the defect region. The approximate solution is compared with solutions from detailed finite element models developed for parallelepipedic subsurface defects. We obtain differences in LF that range between 1.7% and 6.7%, indicating that our approximation method yields sufficient performance. Furthermore, a linear inverse solution based on the novel forward method is presented. We invert the experimental data measured from a subsurface flaw with the dimensions of 2 mm×2 mm×12 mm located within a laminated conductive bar. The reconstruction method yields the correct position of the flaw with an accuracy of 1 mm in each direction. The reconstruction results are compared with high-resolution finite element analysis of the same crack configuration. We obtain correct lateral positions of the cracks, although the depth estimation shows a slight bias.  相似文献   

13.
In this work, it was determined that with increasing weld pitch, the occurrence of a “lazy S” defect in the weld nugget of friction stir welded (FSWed) AA6061 became increasingly pronounced, though its impact on the bend performance of the weld was negligible. For a fixed weld pitch of 0.48, the effect of gap, i.e. the spacing between two sheets at the butt joint interface, on the joint quality of AA6061 was evaluated in terms of the welding defects, microstructure, hardness and bend performance. Fully penetrated welds without metallurgical defects such as wormholes were obtained up to a joint gap of 0.5 mm. Though the overall microhardness and bend performance of the welds remained unaffected until a joint gap of 0.8 mm, the decrease in the forge force during FSW beyond a joint gap value of 0.5 mm may represent a more critical limit in regards to the industrial application of the process; this is especially important when applying force control during processing to ensure a constant shoulder penetration in the material for addressing practical considerations, such as thickness variations in the assembly, clamping distortions and tool wear. Based on these results and using force amplitudes recorded during the welding experiments, a robotic scenario was synthesized with an appropriate operational window for continuous-path friction stir butt welding (FSBW) of 3.18-mm-thick sheets clamped to a 1 m × 1 m horizontal welding table. An appropriate industrial robot model was selected and the associated geometric workcell layout was developed for this application. This scenario was implemented in a physical prototype and used to successfully produce 1-m-long FSWed assemblies that exhibited good tensile mechanical performance.  相似文献   

14.
Monocrystalline tantalum with orientations [1 0 0] and [1 1 1] was subjected to laser-driven compression at energies of 350–684 J, generating shock amplitudes varying from 10 to 110 GPa. A stagnating reservoir driven by a laser beam with a spot radius of ~800 μm created a crater of significant depth (~80 to ~200 μm) on the drive side of the Ta sample. The defects generated by the laser pulse were characterized by transmission and scanning electron microscopy, and are composed of dislocations at low pressures, and mechanical twins and a displacive phase transformation at higher pressures. The defect substructure is a function of distance from the energy deposition surface and correlates directly with the pressure. Directly under the bottom of the crater is an isentropic layer, approximately 40 μm thick, which shows few deformation markings. Lattice rotation was observed immediately beneath this layer. Further below this regime, a high density of twins and dislocations was observed. As the shock amplitude decayed to below ~40 GPa, the incidence of twinning decreased dramatically, suggesting a critical threshold pressure. The twinning planes were primarily {1 1 2}, although some {1 2 3} twins were also observed. Body-centered cubic to hexagonal close-packed pressure induced-transformation was observed at high pressures (~68 GPa).The experimentally measured dislocation densities and threshold stress for twinning are compared with predictions using analyses based on the constitutive response, and the similarities and differences are discussed in terms of the mechanisms of defect generation.  相似文献   

15.
《Synthetic Metals》2001,125(2):231-238
Quantitative characterization of nano-sized spaces by STM techniques was discussed. Nano-sized spaces were introduced by oxidation; either oxygen plasma on perfect graphite structure or air oxidation on the surface of carbon spheres with highly disordered structure. By the irradiation of oxygen plasma at room temperature, nano-sized structural defects (missing carbon atoms, vacancies) were introduced in graphite layer plane. The increase in input power led to the increases in both density and size of defects, but that in irradiation time with a constant power resulted mostly in the increase of defect density, a little effect on the size of defects. By the oxidation of carbon spheres with disordered structure in static air at 400°C, spaces in the size range of 0.5–1.35 nm increased, though large spaces with the size of >2.2 nm were formed. The characterization of nano-sized spaces by STM with the aid of image processing and statistical analysis was shown to be effective.  相似文献   

16.
Selective laser melting is a rapidly maturing additive manufacturing technology ideally suited to the net-shape fabrication of high value metallic components with complex shapes. However, if the processing conditions are poorly controlled, internal defects such as cracks or pores filled with metal powder may be present and impair the properties. As a result, a non-destructive defect detection method needs to be found that is suited to this application. In this work, a staircase sample was designed and fabricated from Hastelloy X by selective laser melting with step thicknesses ranging from 0.8 mm to 10 mm and with each step containing the same series of custom-made spherical, rod-shaped and coin-shaped defects arranged in different orientations and ranging from 0.2 mm up to 2 mm in size. The sample was exposed to various X-ray radiography testing and analysis methods. In particular, a theoretical and experimental evaluation of defect detection limits by polychromatic X-ray absorption radiography was performed based on the measurable contrast, which depends on both defect size and shape and slab thickness. The experimental data suggest that the minimum detectable contrast is about 1–2% when using X-rays with a very broad spectrum. This equates to a minimum detectable defect size of about 0.2 mm for a Hastelloy X slab thickness of <2 mm. The experimental findings are in good agreement with theoretical expectations. The theoretical framework provides a criterion for estimating contrast, which is useful for optimising the experimental conditions. Polychromatic X-ray absorption radiography represents a simple and effective non-destructive investigation technique. Methods for further improving the defect detection limits are also discussed and examples relative to computed tomography are reported.  相似文献   

17.
We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.  相似文献   

18.
《Intermetallics》1999,7(3-4):447-454
Properties of dislocations in B2-NiAl have been studied atomistically using an embedded atom potential. The response of dislocation cores to applied homogeneous shear stresses is investigated and the Peierls stresses of straight dislocations are determined. The results are in many details in excellent agreement with experimental observations. Specifically, the behaviour of the 〈1 1 1〉 dislocations, their slip planes, cross-slip behaviour and the limiting role of the screw dislocation can be explained. Similarly, the appearance of the {2 1 0} plane as a secondary slip plane for the 〈1 0 0〉 dislocations can be rationalised. Furthermore, the interaction of the dislocations with structural point defects is studied. Comparison with the flow stress of off-stoichiometric NiAl from the literature shows that the individual point defects cannot be made responsible for the strong increase of the flow stress, suggesting that more complex defect structures may play an important role.  相似文献   

19.
We study the link between the indentation size effect and the density of geometrically necessary dislocations (GNDs) through the following approach: four indents of different depth and hardness were placed in a Cu single crystal using a conical indenter with a spherical tip. The deformation-induced lattice rotations below the indents were monitored via a three-dimensional electron backscattering diffraction method with a step size of 50 nm. From these data we calculated the first-order gradients of strain and the GND densities below the indents. This approach allowed us to quantify both the mechanical parameters (depth, hardness) and the lattice defects (GNDs) that are believed to be responsible for the indentation size effect. We find that the GND density does not increase with decreasing indentation depth but rather drops instead. More precisely, while the hardness increases from 2.08 GPa for the largest indent (1230 nm depth) to 2.45 GPa for the smallest one (460 nm depth) the GND density decreases from ≈2.34 × 1015 m?2 (largest indent) to ≈1.85 × 1015 m?2 (smallest indent).  相似文献   

20.
Nanocrystalline tantalum (grain size ~70 nm) prepared by severe plastic deformation (high-pressure torsion) from monocrystalline [1 0 0] stock was subjected to shock compression generated by high-energy laser (~350–850 J), creating pressure pulses with initial duration of ~3 ns and amplitudes of up to ~145 GPa. The laser beam, with a spot radius of ~1 mm, created a crater of significant depth (~135 μm). Transmission electron microscopy revealed few dislocations within the grains and an absence of twins at the highest shock pressure, in contrast with monocrystalline tantalum. Hardness measurements were conducted and show a rise as the energy deposition surface is approached, evidence of shock-induced defects. The grain size was found to increase at a distance of 100 μm from the energy deposition surface as a result of thermally induced grain growth. The experimentally measured dislocation densities are compared with predictions using analyses based on physically based constitutive models, and the similarities and differences are discussed in terms of the mechanisms of defect generation. A constitutive model for the onset of twinning, based on a critical shear stress level, is applied to the shock compression configuration. The predicted threshold pressure at which the deviatoric component of stress for slip exceeds the one for twinning is calculated and it is shown that it is increased from ~24 GPa for the monocrystalline to ~150 GPa for the nanocrystalline tantalum (above the range of the present experiments). Calculations using the Hu–Rath analysis show that grain growth induced by the post shock-induced temperature rise is consistent with the experimental results: grains grow from 70 to 800 nm within the post-shock cooling regime when subjected to a laser pulse with energy of 684 J.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号