首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-resistivity indium tin oxide [ITO] film was successfully deposited on oxygen plasma-treated polyethylene terephthalate [PET] surfaces at room temperature. X-ray diffraction [XRD] measurements demonstrated that the film deposited on the PET surface that had not been treated with oxygen plasma had an amorphous structure. In contrast, after the low-power oxygen plasma treatment of the PET surface, the ITO film deposited on the PET surface had a poly-crystalline structure due to interactions between electric dipoles on the PET surface and electric dipoles in the ITO film. The minimum resistivity of the poly-crystalline ITO was about 3.6 times lower than that of the amorphous ITO film. In addition, we found that the resistivity of ITO film is proportional to the intensity of the (400) line in the film's XRD spectra.  相似文献   

2.
Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.  相似文献   

3.
In the present study, an indium oxide (In2O3) thin film was deposited as a buffer layer between ITO (indium tin oxide) and PES (polyestersulfone) by RF (radio frequency) magnetron sputtering at room temperature, and X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted to characterise the structural variation. The random texture of the ITO/In2O3 multilayered film favoured the (2 2 2) crystallographic plane rather than the (4 0 0) plane, which was favoured in single-layer ITO films. Transmission electron microscopy (TEM) observations further indicated that the buffer layer of In2O3 film was amorphous, while the ITO film was characterised by a columnar structure that was oriented perpendicular to the substrate surface. The electrical and optical properties of ITO/In2O3 multilayered films were enhanced due to the superior crystallinity and larger grain size of the material, as observed by XRD and FESEM. The multilayered film presented an electrical resistivity of 3.1 × 10−4 Ω cm, which is significantly better than that of a single-layer ITO film without an In2O3 buffer layer (4.7 × 10−4 Ω cm). In addition, optical transmission through the multilayered film increased by 2-4% due to the widening of the band gap by 0.2 eV, which was attributed to a Burstin-Moss shift.  相似文献   

4.
An indium-tin-oxide (ITO) thin film with approximately 50 nm thickness was successfully synthesized on glass substrates by using a fully aqueous sol-gel process. The sol was prepared from indium nitrate hydrate and tin fluoride as a precursor. Thermogravimetric analysis confirmed that the sol converted into crystalline ITO at 286 °C. The optical band gap and transmittance of the thin film were observed to increase with annealing temperature and plasma treatment time. X-ray photoelectron spectroscopy and transmittance studies established that the number of oxygen vacancies in the thin film drastically increased with increasing temperature and plasma treatment. The annealing temperature and argon plasma treatment time appear to be key factors in reducing resistivity and increasing the transmittance of the thin film. A considerable decrease in the resistivity of the ITO thin film was observed after Ar plasma treatment. This eco-friendly sol-gel ITO thin film may find potential applications in n-type ohmic electrodes for ink-jet printable electronics.  相似文献   

5.
An oxygen plasma treatment has been used to improve the adhesion of amorphous hydrogenated carbon (a‐C:H) films onto surfaces of recycled poly(ethylene terephthalate) (PET). Modifications produced by the oxygen plasma on the PET surface in chemical bonds and morphology were investigated by X‐ray photoelectron spectroscopy and atomic force microscopy, respectively. Contact angle measurements were used to study the changes in the surface wettability. Adhesion of the a‐C:H film onto the PET surface was investigated by the tape test method. It was observed that the improvement in film adhesion is in good correlation with the increase in surface roughness, due to plasma etching, and with the appearance of oxygen‐related functional groups at the surface. The results of this study indicate that a‐C:H‐coated recycled PET can be used in food packaging. The a‐C:H film could be used as a functional barrier to reduce or prevent migration of contaminants from the polymer to the package content. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
杨若欣  刘建科  史永胜 《硅酸盐学报》2012,40(3):408-409,410,411
室温下,采用射频磁控溅射法在玻璃和聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)上沉积了掺铝的氧化锌(ZnO:Al,AZO)透明导电薄膜。通过X射线衍射仪分析不同衬底上AZO薄膜的结构,采用四探针测试仪及紫外可见光分光光度计测试薄膜的光电性能。结果表明:沉积在两种衬底上的AZO薄膜都具有六方纤锌矿结构,最佳取向均为[002]方向;玻璃衬底和PET衬底上制备的AZO薄膜的方阻分别为19/sq和45/sq,薄膜透光率均高于90%。实验表明,柔性衬底透明导电氧化物薄膜可以代替硬质衬底透明导电薄膜使电子器件向小型化、轻便化方向发展。  相似文献   

7.
An atmospheric pressure plasma system has been used to treat amorphous polyethylene terephthalate (APET) to enhance its healseal properties to a polyethylene terephthalate (PET) film. The plasma treated APET sheet material was thermoformed into trays for use in the food packaging industry and heatsealed to a PET film. The heatsealing properties of the resulting package were assessed using the burst test technique. It was found that the plasma treatment significantly enhanced the adhesive properties and an increase in burst pressure from 18 to 35 kPa was observed for plasma treated food trays. The APET surface chemistry was assessed after plasma treatment where it was found that the plasma treatment had affected an increase in oxygen and an addition of nitrogen species to the polymer surface. The surface roughness (Ra) of the plasma treated samples was also observed to increase from 0.4 to 0.9 nm after plasma treatment.  相似文献   

8.
Fluorine-doped tin oxide (FTO) films were deposited on float glass to create low-emissivity glass (low-E glass) by atmospheric pressure chemical vapor deposition (APCVD). Heat treatments were carried out to assess its antioxidant properties. The surface morphology, crystal structure, and the oxygen and tin concentrations in the FTO films were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), Auger electron spectrometer (AES), and X-ray photoelectron spectroscopy (XPS), respectively. The results indicated that the electrical properties determined by the four-point probe method remained constant up to 600°C with increasing temperature. The FTO films exhibited nonstoichiometry with a ratio of [O]/[Sn] >2 on the top surface and <2 in the film. The sheet resistance of the film strongly depended on the oxygen concentration on the film surface. When the heating temperature reached 700°C, the sheet resistance increased rapidly from 9.4 to 86.7 Ω/□ with a concomitant increase in the oxygen concentration on the top surface.  相似文献   

9.
在ITO玻璃衬底上制备锆钛酸铅铁电薄膜   总被引:4,自引:0,他引:4  
利用射频反应性溅射沉积技术在掺的Sn的In2O3导电透明膜衬底上制备了钙钛矿型Pb(Zr,Ti)O3(PZT)铁电薄膜。研究了沉积参量与热处理工艺对铁电薄膜结构和性能的影响。运用X射线衍射、X射线光电子能谱和扫描电镜等技术,分析了薄膜的晶体结构、表面形貌和表面元素化学状态。测量了不同处理条件下薄膜的铁电性能。结果表明:在掺Sn的In2O3导电透明膜衬底上可以得到表面无裂纹,化学计量比符合要求的PZ  相似文献   

10.
《Ceramics International》2019,45(12):15077-15081
Calcium copper titanate (CCTO) thin films were deposited on indium tin oxide (ITO) substrates using radio frequency (RF) magnetron sputtering, at selected Ar:N2 flow rates (1:1, 1:2, 1:4, and 1:6 sccm) at ambient temperature. The effect of Ar:N2 flow rate on the morphology, optical and electrical properties of the CCTO thin films were investigated using FESEM, XRD, AFM, Hall effect measurement, and UV–Vis spectroscopy. It was confirmed by XRD analysis that the thin films were produced is CCTO with cubic crystal structure. As the flow rate of Ar:N2 increased up to 1:6 sccm, the thin film thickness reduced from 87 nm to 35 nm while the crystallite size of CCTO thin film decreased from 27 nm to 20 nm. Consequently, the surface roughness of thin film was halved from 8.74 nm to 4.02 nm. In addition, the CCTO thin films deposited at the highest Ar:N2 flow rate studied, at 1:6 sccm; are having the highest sheet resistivity (13.27 Ω/sq) and the largest optical energy bandgap (3.68 eV). The results articulate that Ar:N2 flow rate was one of the important process parameters in RF magnetron sputtering that could affect the morphology, electrical properties and optical properties of CCTO thin films.  相似文献   

11.
采用溶剂热法制备W18O49纳米线电致变色材料,喷涂在聚对苯二甲酸乙二醇酯?氧化铟锡(PET?ITO)(方阻35 Ω)柔性透明导电基底上得到柔性电致变色薄膜。采用X射线衍射仪、扫描电子显微镜、高分辨场透射电子显微镜和X射线光电子能谱对W18O49的微观结构和价态等进行表征,用电化学工作站与紫外?可见光分光光度计对W18O49/PET?ITO柔性电致变色薄膜的光学调制范围、响应时间和循环稳定性等进行了表征和分析。结果表明,光谱扫描波长?=633 nm时,W18O49/PET?ITO柔性电致变色薄膜的光学调制范围ΔT=23%。薄膜透光率变化90%时,着色和褪色时间分别为12.8和10.6 s。W18O49/PET?ITO柔性电致变色薄膜具有优异的循环稳定性,连续着色褪色循环3000 s薄膜透光率仍达80.9%。  相似文献   

12.
To develop high‐quality electromagnetic interference (EMI) shielding materials, the effect of plasma pretreatment with various gases prior to Cu plating was investigated. Plasma treatment increased the surface roughness in the decreasing order of Ar > O2 > NH3, but adhesion of the Cu layer on poly(ethylene terephthalate) (PET) film increased in the following order of O2 < Ar < NH3, indicating that the appropriate surface roughness and introduction of an affinitive functional group to Pd on the surface of the PET film were key factors for improving adhesion of the Cu layer. As investigated by XPS analysis, plasma treatment with NH3 produced N atoms on the PET film, which enhances the chemisorption of Pd2+ on PET film, resulting in improved adhesion and shielding effectiveness of the Cu layer deposited on the Pd‐catalyzed surface, because of the high affinity of Pd2+ for nitrogen. Comparatively, O2 plasma treatment allowed the chemisorption of more Sn2+ than of Pd2+ due to a lack in the affinity of Pd2+ for oxygen, resulting in the lowest Pd3d/Sn3d ratio; thereby, the lowest EMI–shielding effectiveness (SE) value was obtained. In addition, fairly low adhesion was obtained with Ar plasma‐treated PET, even though the PET surface was significantly etched with Ar plasma, due to introduced oxygen groups on the PET surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1369–1379, 2002; DOI 10.1002/app.10272  相似文献   

13.
WOx:Mo薄膜的结构及电致变色性能研究   总被引:5,自引:0,他引:5  
黄佳木  施萍萍  吕佳 《硅酸盐学报》2004,32(5):580-584,589
采用反应磁控溅射工艺,以纯钨和纯钼为靶材在ITO玻璃上制备Mo掺杂WOx电致变色薄膜,用薄膜的透射光谱和XRD衍射方法对掺杂后薄膜的电致变色性能和结构进行了分析,研究了Mo掺杂对WOx薄膜电致变色性能和微观结构的影响机理。实验结果表明:在一定掺杂范围内,Mo掺杂对薄膜电致变色性能有较大提高;掺杂越均匀,对薄膜电致变色性能的改善越显著。影响薄膜电致变色性能的相应掺杂量由溅射时间表示,相对掺量存在最佳值,即7.7%附近,薄膜的变色性能可得到最大的提高,按实验结果趋势分析掺杂量存在有效范围,超出有效掺杂范围,掺杂便会失效。XRD分析表明,掺杂Mo之后的WOx薄膜仍为非晶态,且非晶态有增强的趋势。  相似文献   

14.
ITO是锡掺杂氧化铟薄膜的简称,属于透明导电氧化物材料。常规沉积方法制备的ITO薄膜通常为非晶态或体心立方晶系晶体,为n型半导体材料,其载流子为自由电子,主要来源于沉积过程中薄膜化学计量比偏离或阳离子掺杂形成的施主杂质。ITO薄膜是当前研究和使用最为广泛的透明导电氧化物薄膜材料,由于具有低电阻率、高可见光透过率、高红外反射率等独特物理特性而被大量应用于平板显示器、太阳能电池、发光二极管、气体传感器、飞机风挡玻璃除霜器等领域。此外,ITO薄膜对微波还具有高达85%的衰减作用,因而在电磁屏蔽等军用领域显示出巨大的潜在应用价值。过去几十年里,针对ITO薄膜的研究工作主要聚焦于薄膜的光电性能上。当前,伴随着ITO薄膜的应用范围在航空航天和军用武器装备等领域的拓展,ITO薄膜在恶劣力学环境中的使用日渐增多。因此,除光电性能外,ITO薄膜的力学性能也开始受到研究者越来越多的关注,人们对薄膜器件在各类恶劣使用环境中的稳定性及耐久性提出了更高的要求,这一要求使得对ITO薄膜力学性能的深入研究分析有了重要的理论及实际意义。本文综述了近年来ITO薄膜在微结构特性、能带结构、光电性能及力学性能等方面的研究进展,简略探讨了ITO薄膜的研究发展方向。  相似文献   

15.
Poly(vinyl alcohol) (PVA) nanofiber mats were collected on indium tin oxide (ITO) substrate by electrospinning method. A multilayer film composed of α-[P2W18O62]6− (abbr. P2W18), a polyoxometallate (POM) anion, and poly(diallymethylammonium chloride) (abbr. PDDA) was fabricated by layer-by-layer (LBL) self-assembly technique on the PVA/ITO electrode. The PDDA/P2W18 multilayer film could be unselectively or selectively deposited on the PVA/ITO electrode via changing the amount of PVA nanofibers on the ITO substrate. The scanning electron microscope (SEM) images showed that when the electrospun time was short the PDDA/P2W18 multilayer film was unselectively deposited on PVA nanofiber mats because the amount of PVA nanofibers was too little to cover most of the ITO substrate. However, when the electrospun time was long enough, the PDDA/P2W18 multilayer film was selectively deposited on PVA nanofiber mats because of the larger surface area and higher surface energy of PVA nanofibers in comparison with the flat ITO substrate. Growth process of the multilayer film was determined by cyclic voltammetry (CV). Electrocatalytic effects of the PDDA/P2W18 multilayer film unselectively and selectively deposited on the PVA/ITO electrode on NO2 were observed.  相似文献   

16.
Specific polar groups were introduced on a poly(ethylene terephthalate) (PET) film surface by radio-frequency (RF) plasma treatment. These polar groups were analyzed quantitatively by ESCA, and their effect on the adhesion strength of vacuum-deposited thin cobalt metal film on the plasma-treated PET film surface was investigated. Hydroperoxide and hydroxyl groups introduced onto the PET film surface by RF plasma under an argon or oxygen atmosphere greatly increased the adhesion strength. In particular, oxygen plasma treatment at high RF power was most effective. A large number of amino groups were introduced by the ammonia plasma treatment, but they did not increase the adhesion strength.  相似文献   

17.
Oxygenated amorphous carbon thin films were deposited by DC magnetron sputtering using various argon and oxygen process gas mixtures. The X-ray diffraction data indicated that the predominantly amorphous films had more defined peaks with a higher partial pressure of oxygen. Results indicated that use of oxygen in the working gas enhanced the crystalline nature of the films. Scanning electron and atomic force microscopy revealed that the surface roughness and film topography differed with the oxygen process gas variations. X-ray photoelectron spectroscopy revealed increased surface oxygen content with higher oxygen concentration in the working gas. Raman spectroscopy results suggested that the increased oxygen in the films may have led to a higher percentage of sp3-bonded carbon atoms. The growth rate (deposition rate) of the films decreased as the amount of oxygen increased. This decreased deposition rate was associated with an oxygen etching of the film.  相似文献   

18.
Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.  相似文献   

19.
Indium tin oxide (ITO) films (0.3 μm thick), with a doping level of 28 mol% SnO2, were prepared by a radio frequency magnetron sputtering mehthod. The effects of postannealing on the microstructure and the electrical properties of the ITO films were investigated. The as-sputtered film showed an amorphous structure, whereas the films annealed at 350° and 510°C exhibited crystalline structures with grain sizes of 0.12 and 0.14 μm, respectively. Examination by TEM showed that the postannealing treatment induced SnO2 precipitates along the grain boundaries. The resistivity increased with increasing postannealing temperatures. The mobility of carriers appears to be responsible for the resistivity increase in these specimens. The mobility change is discussed in connection with the SnO2 precipitates.  相似文献   

20.
In this work, PEGylated chitosan derivatives were prepared and used to modified poly(ethylene terephthalate) (PET) fabrics. PET fabrics surface were etched by oxygen plasma before different concentrations PEGylated chitosan derivatives solution treatment. The effects of oxygen plasma and PEGylated chitosan derivatives on the surface properties of PET fabrics are investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Surface wettability was monitored by water contact angle measurement and moisture regains. The results showed that the occurrence of oxygen‐containing functional groups (i.e., C?O, C? O, and ? OH) of the plasma‐treated PET and the surface coarseness increased from those of the untreated one. There was a layer film formed on the surface of PET fabrics after PEGylated chitosan modification. The combination treatment of oxygen plasma with PEGylated chitosans lightly lowered the breaking strength and elongation of PET fabric. That moisture regains increased and the contact angle decreased implied the hydrophilicity enhancement for the PET fabrics. In addition, dyeing property of PEGylated chitosan derivative modified PET was improved. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39693.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号