共查询到15条相似文献,搜索用时 46 毫秒
1.
针对传统人脸识别算法在单训练样本情况下识别 效果不佳的问题,提出一种基于中心对称梯度幅值 相位模式(CSGMP)的单样本人脸识别算法。首先,提取人脸图像的梯度幅值和相位信息;然 后,用一种新 的中心对称局部方向模式(CSLDP)算子对梯度幅值进行编码,再将梯度相位量化到8个区间 进行编码,将 二者融合形成人脸图像的CSGMP特征;最后,分块统计直方图特征信息,将所有块的直方图 串联后作为 人脸图像的特征向量,利用最近邻分类器分类识别。在YALE和AR人脸库上进行测试的结果表 明,本文所提方 法简单有效,对光照变化、表情变化和部分遮挡等环境下单样本人脸识别具有较好的效果。 相似文献
3.
4.
局部二值模式(LBP)作为经典的纹理特征描述方法广泛应用于纹理分类和人脸识别等领域。然而现有相关算法仅利用周围一个圆形邻域的信息,没有充分利用周围邻域的信息。为此,提出一种利用不同圆形邻域之间的微分结构信息进行联合描述的特征描述子,从而能够更加充分地利用邻域信息。由于所提方法在圆形邻域上每个坐标处有4种不同可能的取值情况,因此将这种模型称为局部四值模式(LQP)。在通用的人脸识别数据库FERET上的大量实验证明了所提算法的有效性。 相似文献
5.
针对局部二值模式(LBP)特征在低分辨率的人脸图 像上识别率较低的问题,提出了一种基于分块中心对称局部二值模式(CS-LBP,center symmetric local binary pattern)和加权主成分分析(PCA)算法的低分辨率人脸识别算法。 首先利用分块CS-LBP算子提取低分辨率人脸图像的特征;然后利用加权PCA算子对特 征进行降维, 从而得到更强的分类特征;最后利用最近邻分类器选出人脸最优分类类别并计算识别率。在 ORL人脸库上的实验表明,在人脸图像分辨率下降到(12×10)时,本 文算法的识别率仍能达 到85.00%,基本满足了实际运用中对识别率的要求,并且降低了运算 时间。 相似文献
6.
局部二值模式在人脸识别领域应用广泛,但是该算法阈值为中心像素,对噪声比较敏感,文章采用小波变换首先对图像进行压缩,降低数据量,然后利用均值和方差的线性组合作为动态阈值进行纹理特征的提取,最后采用最近邻算法进行分类识别。实验结果分析表明改进后的算法的识别率有了一定的提高。 相似文献
7.
针对基于局部二值模式的伪装语音检测方法的合成语音检测准确度较低的情况,提出了一种基于中心对称局部二值模式的伪装语音检测方法。该方法通过短时傅里叶变换得到语音信号的语谱图,再利用中心对称局部二值模式提取语谱图的纹理特征,并用该纹理特征训练随机森林分类器,从而实现真伪语音的判别。该方法综合考虑语谱图中像素点的数值大小和位置关系,包含了更加全面的纹理信息,并将特征维度降低至16维,有利于减少计算量。实验结果表明,在ASVspoof 2019数据集上,与传统的基于局部二值模式的伪装语音检测方法相比,所提方法将合成伪装语音的串联检测代价函数(t-DCF)降低了16.98%,检测速度提高了89.73%。 相似文献
8.
针对局部三值模式(Local Ternary Pattern,LTP)对纹理特征描述不足的问题,提出一种基于局部幅度三值模式(Local Magnitude Ternary Pattern,LMTP)的人脸识别算法。首先将人脸图像进行分块处理。然后用LTP算子提取直方图以描述局部纹理的结构和LMTP算子提取直方图以描述局部纹理中像素值间的偏离幅度。最后将不同的直方图串联成LTP/LMTP直方图,将其作为人脸特征用于人脸匹配。实验分析表明,算法对纹理有更好的描述能力和在人脸识别中有更高的识别率,并对噪声有较好的鲁棒性。 相似文献
9.
自适应阈值及加权局部二值模式的人脸识别 总被引:1,自引:0,他引:1
针对局部二值模式(LBP)和中心对称局部二值模式(CS-LBP)方法描述图像纹理特征时,阈值不能自动选取并且图像中不同子块的贡献也没有进行区分的问题,该文提出一种自适应阈值及加权的局部二值模式方法。首先,将图像进行分块,采用设定的自适应阈值提取每个子块的LBP或CS-LBP纹理直方图;然后,将各子图像的信息熵作为直方图的加权依据,对每个子块对应的直方图进行自适应加权,并将所有子块的直方图连接成最终的纹理特征;最后,通过快速计算图像均值加快了算法的计算速度。在人脸数据库上进行的实验证明,利用该文提出的方法提取纹理特征,并结合最近邻分类法可以得到较高的正确识别率。 相似文献
10.
在定义局部边缘的基础上提出了局部边缘二值模式(LEBP),并结合Gabor滤波器将其扩展到多分辨率LEBP(MLEBP)。对传统的中心对称局部二值模式(CS-LBP)和方向局部二值模式(D-LBP)进行了改进,新描述符在不增加计算复杂度和提高特征维数的基础上,进一步融入了局部边缘信息。为验证新描述符的性能,采用3个通用的纹理图像库进行图像检索实验。结果表明,结合本文方法,明显提高了传统描述符的分辨能力。 相似文献
11.
《信息技术》2017,(7):1-4
传统LBP模式在提取图像的纹理特征时,没有对图像中的不同子块加以区分。一般情况下图像的不同子块包含的纹理信息不尽相同,不能真实地反映图像纹理的变化情况。为了解决传统LBP算法在人脸识别过程中产生的直方图维数过长、鉴别力不高、对噪声反应敏感等问题,提出一种基于对数能量熵与LBP特征提取的人脸识别方法。首先将一副人脸图像分成互不重叠的大小相等的子块,然后计算每个子块的LBP直方图,同时对每个子块计算对数能量熵值;其次把每个子块的LBP直方图特征与对数能量熵值组合成一个新的特征向量;最后,将每个图像块的特征向量连接成一个全局的特征向量,将该特征向量用作分类识别。基于YALE人脸库,ORL人脸库和FERET人脸库的实验结果与数据分析表明,文中提出的算法能够更加准确地提取图像的特征信息,有效地提高了人脸识别率。 相似文献
12.
13.
红外人脸成像具有对光照、人脸皮肤、表情、姿态等因素变化不敏感的特点,可以在一定程度上弥补这些因素对可见光人脸识别影响的不足。为了充分提取红外人的局部鉴别特征,文中提出了一个基于局部二元模式的快速红外人脸识别系统。该系统首先通过thermoVision A40型红外热像仪获分辨率为320240的红外人脸图像,并通过人脸检测和归一化方法提取大小为6080的标准红外人脸图像。其次,基于人脸图像的对称性,将红外人脸图像分块。通过局部二元模式直方图提取每一分块所包含的纹理模式特征。最后,采用Kruskal-Wallis(KW)特征选择算法,进一步抽取对识别有贡献的局部纹理特征用于分类识别。实验结果表明:提出的热红外人脸系统识别率明显优于基于主成分分析(PCA)和线性鉴别分析(LDA)的传统红外人脸识别系统,可以达到98.6%的识别率。与此同时,提出的红外人脸识别系统识别速度也快于传统基于PCA和LDA系统,可以广泛应用于实时人脸识别中。 相似文献
14.
针对跟踪雷达的三种常见欺骗干扰,提出了一种基于积谱矩阵( SPM)局部二值模式( LBP)的识别算法。首先,计算雷达接收信号不同脉冲重复周期( PRI )的积谱,并将其按照频域和慢时域排列成一个二维积谱矩阵。然后,将图像处理的纹理特征引入到欺骗干扰识别的算法中,采用局部二值模式提取二维积谱矩阵的灰度图像特征。最后,通过仿真实验验证了算法的正确性,当雷达接收信号的信噪比( SNR)大于5 dB时,该欺骗干扰识别算法的平均识别概率优于90%。 相似文献
15.
To counter face presentation attacks in face recognition (FR), color texture has been successfully used for face presentation attack detection (PAD) in recent years. However, the existing research does not fully consider the correlation between different color channels as well as the optimization of classification for face PAD. To resolve these limitations, a face PAD scheme based on chromatic co-occurrence of local binary pattern (CCoLBP) and ensemble learning (EL) is proposed in this paper. A color distortion-based face PAD model is first built, and then the chromatic discrepancies between bona fide faces and artefacts are analyzed. After that, CCoLBP is extracted as the feature to characterize these discrepancies. Meanwhile, an EL based classifier is put forward to reduce the effect of class imbalance and to improve the generalization ability. Experimental results and analysis indicate that the proposed scheme can achieve an overall good performance. Moreover, it can achieve significant improvement in the cross-database test, and its computational complexity can meet the requirement of real time applications. 相似文献