首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
以酿酒酵母为发酵菌种,使用自主优化筛选配制的糖蜜培养基,分别采用残糖反馈分批补料和连续流加补料方式,优化发酵工艺条件以提高发酵液中菌体密度。残糖反馈分批补料,拟设定3个梯度,分别控制对数期发酵液中残糖含量在0.5%~1.5%,1.0%~2.0%,1.5%~2.5%。三次试验结果分别为,试验1菌体培养32 h时达到最大生物量,为28.88 g/L;试验2菌体培养52 h时达到最大生物量,为27.43 g/L;试验3菌体培养24 h时达到最大生物量,为22.06 g/L。通过连续流加补料培养菌体,结果培养30 h时达到最大生物量,为29.29 g/L。  相似文献   

2.
γ-聚谷氨酸(γ-polyglutamic acid,γ-PGA)是一种应用于食品、农业、医药等领域的生物聚合物。在不补料发酵γ-PGA过程中,存在因培养基中碳源、氮源不足导致菌体生长发育和γ-PGA合成受限的情况。为实现γ-PGA高产,采用分批补料发酵方式补充菌体生长代谢所需的碳源和氮源,在5 L发酵罐中进行γ-PGA分批补料发酵优化,并在200 L发酵罐进行放大验证。结果表明:当培养基中葡萄糖含量低于5 g/L、氨氮浓度低于0.5 g/L时开始流加补料,持续补料12 h将培养基中葡萄糖浓度维持在5 g/L~15 g/L,氨氮浓度维持在0.5 g/L~1.0 g/L。与不补料发酵相比,这一优化使得菌种指数生长期延长了6 h,生物量(OD660)达到了0.62,提升了39.01%,谷氨酸含量降至16 g/L,谷氨酸利用率提升了38.47%,γ-PGA生产强度和产量分别为15.69 g/(L·d)、(47.09±0.82)g/L,均提高了38.45%,为γ-PGA工业化生产提供了技术支撑。  相似文献   

3.
酿酒酵母发酵生产S-腺苷甲硫氨酸工艺的优化   总被引:2,自引:0,他引:2  
目的 优化酿酒酵母LS101发酵生产S-腺苷甲硫氨酸(SAM)的工艺.方法 用单因素实验法,通过测定SAM浓度、细胞浓度、胞内SAM含量以及胞外SAM浓度等参数来确定较为适合的工艺.结果 得到适合的培养基组成为:蔗糖10%~12%,L-甲硫氨酸0.4%,尿素1.5%~2%,酵母粉3%,甘氨酸0.1%,生物素4 mg/L.8 L发酵罐间歇分批补料发酵,培养54 h后SAM产量为3.9 g/L,细胞浓度达到42.2 g/L.结论 得到了优化的酿酒酵母LS101生产SAM发酵工艺,提高了SAM发酵水平.  相似文献   

4.
葡萄糖流加方式对黄色短杆菌生产L-亮氨酸的影响   总被引:1,自引:0,他引:1  
利用30 L发酵罐,研究了黄色短杆菌TK0303生产L-亮氨酸的发酵工艺。考察了初始葡萄糖浓度和发酵过程中3种补料策略(分批间歇流加补料、恒葡萄糖浓度流加补料和DO-在线识别流加补料)对菌体生物量、L-亮氨酸产量、副产物含量及糖酸转化率的影响。最终确定:分批补料发酵的初始葡萄糖浓度为60 g/L,葡萄糖补加采用DO-在线识别流加方式。根据溶氧响应信号的特征反馈控制葡萄糖的流加速率,可实现葡萄糖的限制培养,有效减少了发酵副产物的含量,菌体生物量和L-亮氨酸产量得到显著提高,分别为21.8 g/L和41.3 g/L,且糖酸转化率高达22.4%。  相似文献   

5.
该研究以谷氨酸棒杆菌(Corynebacterium glutamicum)P169为研究对象,以谷氨酸产量为主要评价指标,采用单因素试验和响应面法对其发酵条件进行优化,并进行摇瓶和20 L罐分批补料发酵验证。结果表明,谷氨酸棒杆菌P169产谷氨酸的最佳发酵条件为酵母粉41.0 g/L、葡萄糖27.0 g/L、尿素12.0 g/L和pH 7.0。在此优化条件下,谷氨酸产量达25.1 g/L,比优化前(16.5 g/L)提高了52.1%。以此为基料进行20 L罐分批补料发酵,谷氨酸产量达155 g/L,比优化前(142 g/L)提高了9.2%。该研究为提高谷氨酸棒杆菌谷氨酸产量提供了一种技术解决方案。  相似文献   

6.
毛健  马海乐 《食品科学》2009,30(23):377-382
研究摇瓶灵芝菌体液态深层发酵温度和初始pH 值,在此基础上进行5L 发酵罐批次培养,研究发酵过程pH 值控制、溶氧控制对灵芝菌体生长和灵芝胞外多糖的影响。结果表明:发酵温度30℃,初始pH 值为6.0;过程pH 值控制策略:菌体生长前期(0~40h)控制pH 值为5.5,40~48h 控制pH 5.0,48h 后至发酵结束控制pH4.5;溶氧控制策略为:搅拌转速160r/min,通风量0.75vvm。优化后的验证实验结果:灵芝菌体生物量最高达到19.7g/L,胞外多糖最高达到3.23g/L,较优化前灵芝菌体生物量12.8g/L 和灵芝胞外多糖2.39g/L 分别提高了53.9% 和35.1%。  相似文献   

7.
研究刺孢小克银汉霉(Cunninghamellaechinulata)发酵生产γ-亚麻酸(GLA)的补料工艺。结果表明,该菌株在含有0.25%黄豆饼粉的发酵培养基中,以分批补料方式,即培养2.5d后补入20g/L食用糖与10g/L麦芽糖混合液,培养第3d时补入1.0g/L(NH4)2SO4,在培养第4d补入2.0g/LMgSO4,在培养第5d补入2.0g/LMnSO4。培养10d,菌体生物量达17.065g/L,油脂产量达6.530g/L,GLA%达23.5157%,GLA含量达1535.58mg/L,与补料前相比,生物量、油脂量、GLA%、GLA含量分别提高79.67%、217.30%、14.85%和264.43%。  相似文献   

8.
郑志达  陈璇  姜悦 《食品科学》2016,37(17):145-149
为了提高高山被孢霉(Mortierella alpina)发酵生产花生四烯酸(arachidonic acid,ARA)的产量,研究pH值控制及不同底物流加方式对M. alpina产ARA的影响。在0~90 h菌体生长阶段pH值维持在6.0,90 h以后上调至6.5,并在此基础上考察了3 种补料方式(一次性补料、恒定葡萄糖速率补料和pH值反馈补料)对菌体生物量、油脂产量及ARA产量的影响。结果表明:发酵过程中pH 6.0时可以促进菌体的生长,而pH 6.5时有利于油脂的合成。与其他补料方式相比,pH值反馈补料不仅使发酵周期缩短至160 h,而且在该条件下得到ARA最大生产强度及产量,分别为1.32 g/(L·d)和8.82 g/L。  相似文献   

9.
磷酸盐对大肠杆菌发酵异亮氨酸的影响   总被引:1,自引:0,他引:1  
探究磷酸盐浓度对大肠杆菌E.coli TRFP发酵生产L-异亮氨酸的影响。利用30 L发酵罐进行分批补料发酵试验,考察磷酸盐浓度对E.coli TRFP发酵生产L-异亮氨酸过程中生物量、比生长速率、L-异亮氨酸产量、发酵液中乙酸及NH4+浓度变化。结果表明,发酵初期维持低浓度磷酸盐(2 g/L KH2PO4),后期补加2 g/LKH2PO4可有效减缓菌体衰退,最终使菌体生物量和异亮氨酸产量分别提高了24.5%和12.7%,且副产物乙酸含量明显降低。  相似文献   

10.
补料分批发酵生产谷胱甘肽的研究   总被引:2,自引:0,他引:2  
潘亚磊  贺小贤  陈珊 《食品科学》2010,31(1):177-180
考察5L 发酵罐中分批补加葡萄糖对发酵生产谷胱甘肽(GSH)的影响。采用20g/L 初糖质量浓度,在发酵12h 至27h 每隔3h 分别补加22、24、24、24、24g/L 和22g/L 葡萄糖,可以使酿酒酵母在发酵33h 时GSH 质量浓度达到72.49mg/L,细胞干质量浓度达到28.52g/L,分别为初糖20g/L 分批培养方式的2.86 倍和4.93 倍。补料分批发酵可以明显促进酿酒酵母生长和提高GSH 的合成。  相似文献   

11.
酿酒酵母发酵生产谷胱甘肽的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以诱变获得的酿酒酵母突变株YF(ZnCl2r,Ethr)为试验菌株,通过摇瓶发酵、发酵罐补料分批发酵,对突变株发酵生产谷胱甘肽进行研究.确定发酵罐分批发酵的最佳培养条件为:温度30℃,pH 6.0,接种量为20%,搅拌转速为150 r/min,通气量为250 L/h.在补料分批操作方式下,分别考察了摇瓶培养、发酵罐培养...  相似文献   

12.
冮洁  卜红宇 《食品科学》2009,30(9):176-179
本实验考察了氧应力和前体氨基酸对酿酒酵母HSJB1生物合成谷胱甘肽(GSH)的影响。在酿酒酵母HSJB1发酵过程中,将0.01、0.1、1g/L浓度的双氧水分别在发酵开始、对数期中期、稳定期和产生GSH最高时加入发酵培养基中,结果表明:发酵开始和对数期中期加入0.01g/L双氧水和稳定期和产生GSH最高时加入0.1g/L双氧水对GSH的合成有促进作用,其余的情况都对GSH的合成有抑制作用,GSH含量最高达到43.73mg/L,比添加前GSH含量提高了5.3%,所有的添加双氧水实验都对细胞生长有抑制作用。研究了添加前体氨基酸对菌体生长及GSH合成的影响,随着甘氨酸浓度的增加细胞生长受到抑制,GSH含量减少;随着谷氨酸添加浓度的增加细胞生长和GSH含量变化不大;半胱氨酸对谷胱甘肽的合成有明显的促进作用,其浓度为9mmol/L,GSH含量为67.11 mg/L,比未添加半胱氨酸提高了81.88%。  相似文献   

13.
试验收集培养了9株酵母菌,分别测定他们的细胞生物量和胞内谷胱甘肽(GSH)含量,酿酒酵母SP004细胞干重达到11.39g/L,啤酒酵母TS013胞内GSH含量达到1.5282mg/g湿细胞;验证考察了4种不同提取方法对细胞内GSH含量测定的影响,结果表明,温差破碎法提取效果较好.同时比较9株酵母菌催化合成GSH的能力,结果显示,絮凝酵母SP5 GSH合成酶活力相对较高,酶活达到2.385mg/g湿细胞,每克湿细胞催化前体氨基酸(AA)合成GSH转化率为7.76%.用单因素试验和正交试验分析法研究不同反应液体积与菌体量比、硫酸镁浓度、磷酸钾缓冲液浓度以及葡萄糖浓度对絮凝酵母SP5细胞催化前体AA合成GSH的影响,结果表明,合成GSH的适宜条件为:谷氨酸60mmol/L、半胱氨酸20mmol/L、甘氨酸20mmol/L、七水合硫酸镁20mmol/L、葡萄糖0.5mol/L、pH值为7.0磷酸钾缓冲液100mmol/L,30℃下,160r/min,振荡反应时间6h.在此条件下,絮凝酵母SP5细胞GSH合成酶活力平均达到2.9498mg/g湿细胞,每克絮凝酵母SP5湿细胞催化前体AA合成GSH的转化率平均为9.60%.  相似文献   

14.
本研究对产番茄红素的工程菌W-05进行发酵条件优化。首先单因素实验确定培养基种类;培养温度;培养基中的较优碳源、氮源以及无机盐。然后根据单因素实验结果,设置响应面实验确定各因素之间的交互影响,响应面实验结果表明培养基各组分为:蛋白胨10.00 g/L、酵母浸出粉5.00 g/L、甘油7.80 mL/L、硝酸铵3.30 g/L、KH2PO4 1.80 g/L、Na Cl 11.62 g/L时,番茄红素得率达理论值为3.42 mg/L。在5 L发酵罐中,使用优化后的培养基高密度培养工程菌W-05。实验结果显示工程菌W-05高密度培养较优发酵条件为:p H值为7.0,溶氧百分数为20%左右及指数流加补料。此条件对比普通分批培养条件,菌体的生物量和番茄红素产量显著提高(p0.05)。优化发酵29 h后的菌体干重达到16.55 g/L,番茄红素得率为19.93 mg/L。这说明改善培养基成分及发酵条件能大幅提高工程菌的番茄红素得率。  相似文献   

15.
谷胱甘肽(glutathione,GSH)是生物体内重要非编码且含有巯基的三肽类物质,具有调节和保护等功能,在医药、食品等领域有着广泛的应用。目前,工业上主要通过高密度发酵生产GSH,ATP的供应往往成为GSH生产的限制因素。该文以毕赤酵母GS115为出发菌株,整合串联表达来源于酿酒酵母的Scgsh1和Scgsh2基因,在添加氨基酸前体的条件下,GSH质量浓度可达(302.27±5.06)mg/L,较改造前提高2.88倍。之后优化了柠檬酸钠的添加条件,摇瓶水平最高可达(371.12±8.47)mg/L。最后对工程菌的上罐发酵,通过控制乙醇质量浓度优化葡萄糖的补料速率,实现两阶段高效合成GSH,菌体生物量OD 600最高可达257,发酵68 h时GSH产量最高可达2000 mg/L。该研究为GSH的工业化生产提供了策略参考。  相似文献   

16.
研究了隐甲藻(Crypthecodinium cohnii ATCC 30772)以摇瓶发酵培养方式获得最大生物产量和最高二十二碳六烯酸(docosahexaenoic acid,DHA)产量的培养条件.结果表明,有利于隐甲藻生长和DHA积累的最佳培养条件为:培养温度为22℃,先以12g/L葡萄糖为碳源培养4d,后再以3g/L醋酸钠为碳源培养4d.由此获得的生物产量为234.85mg/(L·d),DHA产量为17.45mg/(L.d),DHA含量为74.36mg/g菌体.  相似文献   

17.
对酿酒酵母CWY132利用糖蜜为碳源,生物转化L-苯丙氨酸(L-Phe)生成2-苯乙醇的液-液两相分批补料培养工艺进行了研究。发现在以聚丙二醇(PPG1500)作为抽提剂的液-液两相培养中,采用分批补料方式添加糖蜜和L-Phe使2-苯乙醇产量明显提高。在0、4、8、12、24 h分别添加40 g/L糖蜜,4、8 h分别添加12 g/L、3g/L L-Phe的液-液两相分批补料培养中,2-苯乙醇产量最高达到9.03 g/L,其中抽提相中2-苯乙醇浓度22.5 g/L,比优化前的液-液两相单批培养中的产量4.82 g/L提高了87%。底物L-Phe的摩尔转化率达到0.82 mol/mol。  相似文献   

18.
产谷胱甘肽面包酵母的选育及发酵条件优化研究   总被引:1,自引:3,他引:1  
本文以面包酵母BV54为出发菌株,镉盐抗性为筛选标记,经紫外和硫酸二乙酯复合诱变,筛选出一株高镉盐抗性面包酵母菌株BV54-11-11,经摇瓶发酵其谷胱甘肽产量迭98.8 mg/L,胞内含量为15.22 mg/g.借助于SAS软件,用最陡爬坡路径逼近最大响应区域,再利用Box-Behnken实验设计及响应面分析法进行回...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号