首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
里氏木霉突变株RM-27是一种高产纤维素酶生产菌。本文对里氏木霉RM-27摇瓶发酵产酶条件及小型自动发酵罐工艺条件等进行了系统的研究。试验结果表明,在通风量0.2-0.6vvm,搅拌转速为250-400rpm、发酵温度29℃及控制发酵液pH在5.0-5.5的条件下,在25L发酵罐上发酵104小时左右,其滤纸酶活和羧甲基纤维素酶活分别为31.8和5160mg葡萄糖/ml,发酵滤液用硫酸铵盐析沉淀得固  相似文献   

2.
里氏木霉固体发酵生产纤维素酶的研究   总被引:15,自引:0,他引:15  
以里氏木霉突变株RM-27为纤维素酶生产菌,采用固体发酵法,29℃发酵144小时,其滤纸酶活和β-葡萄糖苷酶活分别为600mg和115mg葡萄糖/gDMh。并系统研究了各种营养成份和培养条件对RM-27菌株产纤维素酶的影响。最适发酵培养基为稻草杆或小麦杆70g、麸皮30g、硫酸铵3.0g、玉米浆2.0g,水200ml,自然pH。酶反应最适温度60 ̄65℃,最适pH为5.0。酶pH稳定性较好,在pH  相似文献   

3.
里氏木霉91-3纤维素酶产生条件的研究   总被引:4,自引:0,他引:4  
里氏木霉(Trichodermareesei)A_3经亚硝基胍和紫外线复合处理,获得一株纤维素酶高产菌株91-3。该菌株在最适固态发酵条件下,纤维素酶滤纸酶活力为170u/g曲,产酶水平是出发菌株的1.6倍。酶作用的最适条件为pH4.8,50℃;pH稳定范围为3~7;90℃处理7min,酶活保存率为91.64%;室温放置半年,酶活保存率在90%以上,室温放置一年,酶活保存率在80%以上。  相似文献   

4.
里氏木霉91-3纤维素酶产生条件的研究   总被引:5,自引:0,他引:5  
里氏木霉(Trichodermareesei)A_3经亚硝基胍和紫外线复合处理,获得一株纤维素酶高产菌株91-3。该菌株在最适固态发酵条件下,纤维素酶滤纸酶活力为170u/g曲,产酶水平是出发菌株的1.6倍。酶作用的最适条件为pH4.8,50℃;pH稳定范围为3~7;90℃处理7min,酶活保存率为91.64%;室温放置半年,酶活保存率在90%以上,室温放置一年,酶活保存率在80%以上。  相似文献   

5.
里氏木霉的纤维素酶产生条件研究   总被引:11,自引:0,他引:11  
从 7株里氏木霉中筛选出 1株纤维素酶高产菌Tr G。通过对培养基中含水量 ,C∶N ,初始 pH值 ,葡萄糖、尿素、KH2 PO4 的添加 ,培养时间 ,培养温度以及酶解条件进行优化 ,获得纤维素酶生产菌株Tr G的最佳产酶条件为 :稻草粉 35g ,麦麸 15g ,KH2 PO4 0 2 5g ,MgSO4 ·7H2 O 0 0 2 5g ,(NH4 ) 2 SO4 1g ,豆饼粉水解液 7mL ,葡萄糖 0 .5% ,蒸馏水 2 3倍 ,初始 pH值 5 0 ,最适酶解温度为 6 0°C ,于 2 8°C培养 6d ,最大滤纸酶活达 30 8mgG/ g·h ;尿素对酶活有明显的抑制作用。  相似文献   

6.
一株里氏木霉产纤维素酶发酵条件的研究   总被引:2,自引:0,他引:2  
对里氏木霉产纤维素酶的发酵条件进行研究,结果表明:产酶最佳碳源为2‰麸皮、最佳氮源为(NH4)2SO4、培养时间96~120h、发酵瓶装液量60ml、培养温度25~30℃、培养液初始pH4.5~5.0。  相似文献   

7.
里氏木霉纤维素酶降解小麦秸秆的研究   总被引:5,自引:0,他引:5  
实验确定的里氏木酶纤维素酶降解小麦秸杆的最佳降解条件是:pH值5.0,温度50℃,降解36h,在此条件下可以获得57.6%的底物转化率,金属离子Mn^2 ,Fe^2 能显著地促进底物的降解,而重金属离子Pb^2 ,Al^3 则不利于秸杆的降解。  相似文献   

8.
里氏木霉利用麦糟生产纤维素酶   总被引:3,自引:0,他引:3  
利用里氏木霉(Trichodermaresei),以啤酒厂的废糟为原料,添加适量麸皮和稻草粉为培养基进行固态发酵,采用固体种曲混合接种,在48h翻曲,经144h发酵后FPA酶活达到357U/g。以补加3%麸皮的酒糟水为培养基,调起始pH6.5培养92h的液体种子接种,FPA酶活为178U/g。  相似文献   

9.
里氏木霉与黑曲霉混合发酵产纤维素酶的条件优化   总被引:2,自引:0,他引:2  
为提高纤维素酶酶解秸秆产糖效果,以碱性双氧水处理过的玉米秸秆为发酵基质,进行里氏木霉与黑曲霉混合发酵的研究。通过单因素试验确定黑曲霉延迟接种时间、里氏木霉与黑曲霉接种比例 、发酵时间和固液比4个因素的最优水平。在此基础上,采用Box-Behnken响应面设计对混合发酵产酶条件进行优化,获得最佳产酶条件:黑曲霉延迟接种时间 36h,里氏木霉与黑曲霉接种比例 5:1、发酵时间7d、固液比2:50(m/V)、吐温-80体积分数0.4%、pH 5.0和装液量50mL/250mL。此时,滤纸酶力(FPA)可达1.224 IU/mL,β-葡萄糖苷酶活力(β-GA)可达0.315 IU/mL。采用高效液相色谱法,对最佳条件下的纤维素酶酶解秸秆的水解液进行检测。结果表明,两菌株混合发酵较单菌株发酵的纤维素酶系更加完整,且降解木质纤维素类原料产可发酵性糖的能力增强。  相似文献   

10.
里氏木霉固体发酵生产纤维素酶的研究   总被引:1,自引:0,他引:1  
里氏木霉突变株RM—27是一株高产纤维素酶生产菌,采用固体发酵,发酵144h(培养温度29℃),其滤纸酶活和β—葡萄糖苷酶活分别为600和115mg葡萄糖/gDMh。本试验系统研究了各种营养成份和培养条件对RM-27菌株产纤维素酶的影响。最适发酵培养基:稻草杆或小麦杆70g、麸皮30g、硫酸铵3.0g、玉米浆2.0g,加水200ml,自然pH。酶反应最适温度和pH分别为60—65℃与pH5.0。酶pH稳定性较好,在pH3.0—7.0范围内处理3h,残余酶活力在89%以上,该酶经50℃处理30min,剩余酶活力为85.6%。  相似文献   

11.
里氏木霉(Trichoderma reesei)产纤维素酶液态发酵条件的研究   总被引:1,自引:0,他引:1  
对纤维素酶高产菌株里氏木霉(Trichoderma reesei)ZU03产纤维素酶的液态发酵条件进行了研究,确定了适宜的培养基配方和最佳发酵工艺条件。最优培养基配方及发酵条件为:培养基起始pH4.5,C/N8∶1,纸浆浓度30g/L,培养温度28℃,接种量10%(v/v),摇床转速150r/min,培养时间4d。在此优化发酵条件下,摇瓶发酵液中的纤维素酶FPA活力达11.67IU/mL,比初始发酵条件下酶活力提高近3倍。同样在此优化条件下还进行了5m3罐的中试,FPA活力达8.62Iu/mL。  相似文献   

12.
里氏木霉纤维素酶的纯化和性质   总被引:10,自引:0,他引:10  
培养里氏木霉所得的纤维素酶粗酶液经硫酸铵盐析,透析脱盐和柱层析,紫外检测仪记录结果显示出四个蛋白质峰。经SDS—聚丙烯酰胺凝胶电泳后有四条明显的蛋白质谱带。相对分子量分别为74,000、55,000、47,000、26,000左右。根据分子量大小和蛋白组份的含量分析,这四种组分可能是β—葡萄糖苷酶,CBHI,CBHII和EGI。本实验得到的纤维素酶最适作用pH值在5.0左右,最适作用温度50℃左右。酶在pH4.0—6.0以及温度低于50℃时较稳定。Hg^2 、Ag^2 、Al^3 、Pb^2 、Fe^3 对酶有强烈的抑制作用,而Mn^2 、Co^2 、Fe^2 、Zn^2 、Ca^2 对酶有一定的激活作用。  相似文献   

13.
用里氏木霉(Trichoderma reesei )作为宿主同源表达内切葡聚糖酶基因。运用聚合酶链反应(PCR)技术从里氏木霉cDNA中扩增得到内切葡聚糖酶基因cel7b序列,并将其连接到载体p18-m2上构建重组质粒,将重组质粒转化到里氏木霉菌株中,通过筛选获得表达内切葡聚糖酶的重组里氏木霉工程菌。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)检测显示,发酵液中重组内切葡聚糖酶的分子质量约48 ku。摇瓶发酵结果显示,内切葡聚糖酶在重组里氏木霉中得到分泌表达,发酵液中的内切葡聚糖酶和滤纸酶活分别达到了726 U/mL和28.7 U/mL,分别为出发菌株酶活的2.9倍和1.1倍。玉米芯进行糖化试验结果显示,重组里氏木霉所产酶液糖化玉米芯的酶解得率为81.4%,比出发菌株提高了6.3%。  相似文献   

14.
高产纤维素酶突变株的筛选及其产酶条件优化   总被引:1,自引:0,他引:1  
通过常压室温等离子体技术诱变里氏木霉RUT-C30,筛选高产纤维素酶突变株,并对其产酶进行优化,提高纤维素酶的产量。筛选得到高产纤维素酶突变株后,进行全基因组测序分析突变型,并对产酶培养基和培养条件进行优化。结果表明:经过筛选获得高产纤维素酶突变株JNDY-13,其摇瓶发酵最高滤纸酶活可达2.21 IU/mL,为出发菌株的2.21 倍,优化后JNDY-13在5 L罐中流加发酵所产最高滤纸酶活为5.40 IU/mL;测序结果显示JNDY-13基因组中共有752 个突变发生,其中半乳糖激酶基因中被插入的18 个碱基可能是突变株纤维素酶活力增加的原因。  相似文献   

15.
响应面法优化里氏木霉Rut C-30产纤维素酶液体培养基   总被引:3,自引:0,他引:3  
该试验在单因素对里氏木霉(Trichoderma reesei)Rut C-30产纤维素酶的液体培养基优化的基础上,以滤纸酶活为响应值,采用响应面法确定其最佳培养基。首先通过Plackett-Burman(PB)设计筛选出影响滤纸酶活的显著因素,结晶纤维素和麸皮;通过最陡爬坡试验逼近最大酶活力区域;最后通过Central Composite Design(CCD)设计及响应面分析确定产酶最佳培养基,其中影响酶活的显著性因素结晶纤维素41.8g,麸皮19.1g。经过优化,滤纸酶活力最高为8.21U/mL,比单因素优化结果7.03U/mL提高了16.78%,同时测得CMC酶活为63.64IU/mL,木聚糖酶活为27.4IU/mL,葡萄糖苷酶酶活0.96IU/mL。  相似文献   

16.
该研究以分离自锡林郭勒地区白桦林的一株木霉菌株XLGL201709100为研究对象,采用分子生物学技术对其进行鉴定,以 菌丝生长能力和生物量为评价指标,对其最适生长固体培养基进行筛选,采用滤纸酶活(FPA)法对其产纤维素酶能力进行研究。 结 果表明,木霉菌株XLGL201709100被鉴定为哈茨木霉(Trichoderma harzianum),其最适生长的固体培养基为木生菌葡萄糖蛋白胨酵 母膏(GPY)培养基,且在马玲薯葡萄糖肉汤(PDB)培养基中发酵3 d时,FPA为0.025 U/mL;以白桦木木屑为固体产酶基质发酵7 d时, FPA为1.043 U/g。  相似文献   

17.
以玉米芯与麸皮为主要原料,对影响绿色木霉(Trichoderma viride)JD-1固态发酵的因素如玉米芯与麸皮的比例、氮源浓度、发酵温度、时间、料水比等进行研究。在单因素试验的基础上,采取正交试验设计进行优化。结果表明,最佳固体发酵条件为即玉米芯与麸皮质量比为7∶3,培养温度30 ℃,料液比1∶2.0(g∶mL),培养时间96 h,接种量为10%。在此优化条件下,羧甲基纤维素酶活力达8.95 IU/g,滤纸酶酶活力达2.00 IU/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号