首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Low dimensional semiconductors can be used for various electronic and optoelectronic devices because of their unique structure and property.In this work,one-dimensional Sb2S3 nanowires(NWs)with high crystallinity were grown via chemical vapor deposition(CVD)technique on SiO2/Si substrates.The Sb2S 3 NWs exhibited needle-like structures with inclined cross-sections.The lengths of Sb2S3 nanowires changed from 7 to 13 pm.The photodetection properties of Sb2S3 nanowires were comprehensively and systematically characterized.The Sb2S3 photodetectors show a broadband photoresponse ranging from ultraviolet(360 nm)to near-infrared(785 nm).An excellent specific detectivity of 2.1×1014 Jones,high external quantum efficiency of 1.5×104%,sensitivity of 2.2×104 cm2W-1 and short response time of less than 100 ms was achieved for the Sb2S3 NW photodetectors.Moreover,the Sb2S3 NWs showed out-standing switch cycling stability that was beneficial to the practical applications.The high-quality Sb2S3 nanowires fabricated by CVD have great application potential in semiconductor and optoelectronic fields.  相似文献   

2.
Guo W  Zhang M  Bhattacharya P  Heo J 《Nano letters》2011,11(4):1434-1438
We have measured the Auger recombination coefficients in defect-free InGaN nanowires (NW) and InGaN/GaN dot-in-nanowire (DNW) samples grown on (001) silicon by plasma-assisted molecular beam epitaxy. The nanowires have a density of ~1 × 10(11) cm(-2) and exhibit photoluminescence emission peak at λ ~ 500 nm. The Auger coefficients as a function of excitation power have been derived from excitation dependent and time-resolved photoluminescence measurements over a wide range of optical excitation power density. The values of C(0), defined as the Auger coefficient at low excitation, are 6.1 × 10(-32) and 4.1 × 10(-33) cm(6)·s(-1) in the NW and DNW samples, respectively, which are in reasonably good agreement with theoretical predictions for InGaN alloy semiconductors. Light-emitting diodes made with the NW and DNW samples exhibit no efficiency droop up to an injection current density of 400 A/cm(2).  相似文献   

3.
In this paper, we demonstrate the top-down fabrication of vertical silicon nanowires networks with an ultra high density (4 x 10(10) cm(-2)), a yield of 100%, and a precise control of both diameter and location. Firstly, dense and well-defined networks of nanopillars have been patterned by e-beam lithography using a negative tone e-beam resist Hydrogen SylsesQuioxane (HSQ). A very high contrast has been obtained using a high acceleration voltage (100 kV), very small beam size at a current of 100 pA and a concentrated developer, 25% Tetramethylammonium Hydroxide. The patterns were transferred by reactive ion etching. Using chlorine based plasma chemistry and low pressure, etching anisotropy was guaranteed while avoiding the so-called 'grass effect'. This approach enabled the production of vertical silicon nanowires networks with a 20 nm diameter and a pitch of 30 nm. Lastly, the self-limited oxidation phenomenon in 1D structure has been used to perfectly control the shrinking of NWs and to obtain a Si surface free of defects induced by reactive ion etching. The silicon nanowires networks have been tapered by wet oxidation (850 degrees C) down to a diameter of 10 nm with a high aspect ratio 11.  相似文献   

4.
We investigate electron and hole mobilities in strained silicon nanowires (Si NWs) within an atomistic tight-binding framework. We show that the carrier mobilities in Si NWs are very responsive to strain and can be enhanced or reduced by a factor >2 (up to 5×) for moderate strains in the ± 2% range. The effects of strain on the transport properties are, however, very dependent on the orientation of the nanowires. Stretched 100 Si NWs are found to be the best compromise for the transport of both electrons and holes in ≈10 nm diameter Si NWs. Our results demonstrate that strain engineering can be used as a very efficient booster for NW technologies and that due care must be given to process-induced strains in NW devices to achieve reproducible performances.  相似文献   

5.
Selective growth of amorphous silica nanowires on a silicon wafer deposited with Pt thin film is reported. The mechanism of nanowire growth has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Nanowires grow with diameters ranging from 50 to 500?nm. These bottom-up grown nanowires exhibit photoluminescence with a stable emission of blue light at 430?nm under excitation. The effect of varying the seed layer thickness (Pt film) from 2 to 100?nm has been studied. It is observed that, above 10?nm thickness, a continuous layer of Pt(2)Si re-solidifies on the surface, inhibiting the growth of nanowires. The selectivity to the Pt thickness has been exploited to create regions of nanowires connected to conducting silicide (Pt(2)Si) simultaneously in a single furnace treatment. This novel approach has opened the gateways for realizing hybrid interconnects in silicon for various nano-optical applications such as the localization of light, low-dimensional waveguides for functional microphotonics, scanning near-field microscopy, and nanoantennae.  相似文献   

6.
采用单质Si粉和酚醛树脂为原料、均混、成型、碳化, 并以10℃/min的升温速率在1300~1400℃/0.5~2h的微波加热条件下制备了SiC纳米线. 用SEM和TEM观察所得SiC纳米线形貌, EDX检测样品成分. 结果发现: 所制备的SiC纳米线具有典型的SiC/SiO2芯-壳式缆状结构特征, 直径约为20~100nm. 分析认为, 在微波加热条件下, 液态Si在SiC纳米线生长过程中起着至关重要的作用, 既具有催化作用, 同时又是制备SiC纳米线的关键原料.  相似文献   

7.
GaN nanostructures have been synthesized on silicon substrates using chemical vapor deposition. Prior to growth silicon substrates were engraved using stainless-steel micro-tips. Straight as well as twisted nanowires were observed along the engraved lines/regions. Straight nanowires were few tens of microns in length and the twisted ones were few microns in length with diameter variation between 30 nm and 100 nm. The electron microscopy analysis indicates that the nanowires were grown parallel to the c-axis and possible growth mechanism is described. Raman scattering indicates good quality of nanowires exhibiting intense E2(high) mode and A1(LO) mode and a huge red-shift in the mode position indicates nano-size effects. Such engraved substrates without any explicit catalyst can provide site controlled growth of nanowires and this methodology is extendable for growing nanowires of related materials.  相似文献   

8.
Reversible electrowetting on superhydrophobic silicon nanowires   总被引:1,自引:0,他引:1  
This paper reports for the first time on the reversible electrowetting of liquid droplets in air and oil environments on superhydrophobic silicon nanowires (SiNWs). The silicon nanowires were grown on Si/SiO2 substrates using the vapor-liquid-solid (VLS) mechanism, electrically insulated using 300 nm SiO2, and hydrophobized by coating with a fluoropolymer C4F8. The resulting surfaces displayed liquid contact angle (Theta) around 160 degrees for a saline solution (100 mM KCl) in air with almost no hysteresis. Electrowetting induced a maximum reversible decrease of the contact angle of 23 degrees at 150 VTRMS in air.  相似文献   

9.
Vivid colors are demonstrated in silicon nanowires with diameters ranging from 105 to 346 nm. The nanowires are vertically arranged in a square lattice with a pitch of 400 nm and are electromagnetically coupled to each other, resulting in frequency-dependent reflection spectra. Since the coupling is dependent on the refractive index of the medium surrounding the nanowires, the arrays can be used for sensing. A simple sensor is demonstrated by observing the change in the reflected color with changing refractive index of the surrounding medium. A refractive index resolution of 5 × 10(-5) is achieved by analyzing bright-field images captured with an optical microscope equipped with a charge coupled device camera.  相似文献   

10.
Large number density Pt nanowires with typical dimensions of 12 microm x 20 nm x 5 nm (length x width x height) are fabricated on planar oxide supports. First sub-20 nm single crystalline silicon nanowires are fabricated by size reduction lithography, and then the Si nanowire pattern is replicated to produce a large number of Pt nanowires by nanoimprint lithography. The width and height of the Pt nanowires are uniform and are controlled with nanometer precision. The nanowire number density is 4 x 10(4) cm(-1), resulting in a Pt surface area larger than 2 cm(2) on a 5 x 5 cm(2) oxide substrate. Bimodal nanowires with different width have been generated by using a Pt shadow deposition technique. Using this technique, alternating 10 and 19 nm wide nanowires are produced.  相似文献   

11.
Liu D  Shi T  Tang Z  Zhang L  Xi S  Li X  Lai W 《Nanotechnology》2011,22(46):465601
We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000?°C under a gaseous environment of N(2) and H(2) in the presence of Cu catalyst, sputtered initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 μm and diameters ranging from 50 to 200 nm, with 30 nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones. A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related fields.  相似文献   

12.
50 nm wide n-type silicon nanowires have been manufactured by using a top-down process in order to investigate the thermoelectric properties of silicon nanowire. Nanowire test structures with platinum heaters and temperature sensors were fabricated. The extracted temperature coefficient of resistance (TCR) of the temperature sensors was 786.6 PPM/K. Also, the extracted Seebeck coefficient and power factor of the 50 nm wide phosphorus doped n-type silicon nanowires were -118 miroV/K and 2.16 mW x K(-2) x m(-1).  相似文献   

13.
本文应用镓金属液滴作为催化剂,采用化学气相沉积方法自催化合成了单晶GaSb纳米线.研究表明该GaSb纳米线为典型的p型半导体,霍尔迁移率为>0.042 cm^2V^-1s^-1.硅基和柔性衬底上构筑的基于GaSb纳米线的光电探测器,具有良好的紫外-可见-近红外宽光谱探测性能.硅基器件对500 nm的可见光响应率可达3.86×10^3A W-1,探测率可达3.15×10^13Jones;柔性器件在保持相似光电性能的同时,具有极好的机械柔韧性和稳定性.本文有助于更好地揭示自催化生长的GaSb纳米线的性能,并为进一步设计基于GaSb纳米线的功能光电器件打下了实验基础.  相似文献   

14.
The fracture strength of silicon nanowires grown on a [111] silicon substrate by the vapor-liquid-solid process was measured. The nanowires, with diameters between 100 and 200 nm and a typical length of 2 microm, were subjected to bending tests using an atomic force microscopy setup inside a scanning electron microscope. The average strength calculated from the maximum nanowire deflection before fracture was around 12 GPa, which is 6% of the Young's modulus of silicon along the nanowire direction. This value is close to the theoretical fracture strength, which indicates that surface or volume defects, if present, play only a minor role in fracture initiation.  相似文献   

15.
Piezoresistance of top-down suspended Si nanowires   总被引:1,自引:0,他引:1  
Measurements of the gauge factor of suspended, top-down silicon nanowires are presented. The nanowires are fabricated with a CMOS compatible process and with doping concentrations ranging from 2 × 10(20) down to 5 × 10(17) cm(-3). The extracted gauge factors are compared with results on identical non-suspended nanowires and with state-of-the-art results. An increase of the gauge factor after suspension is demonstrated. For the low doped nanowires a value of 235 is measured. Particular attention was paid throughout the experiments to distinguishing real resistance change due to strain modulation from resistance fluctuations due to charge trapping. Furthermore, a numerical model correlating surface charge density with the gauge factor is presented. Comparison of the simulations with experimental measurements shows the validity of this approach. These results contribute to a deeper understanding of the piezoresistive effect in Si nanowires.  相似文献   

16.
We have fabricated two-dimensional periodic arrays of parallel magnetic and superconducting nanowires on a silicon substrate. Parallel magnetic (nickel) nanowires of cross section 90 nm by 300 nm form a periodic array with Pb82Bi18 superconducting nanowires of cross section 200 nm by 100 nm. These nanostructures were characterized with Scanning Electron Microscopy (SEM) and magnetic properties were studied with Magnetic Force Microscopy (MFM). The phase diagram was determined by electrical transport measurements. Depending on the temperature, the second critical field was 2 to 3 times larger than that of a homogeneous Pb82Bi18 superconducting control film. The superconducting phase diagram and transport properties exhibit strong hysteresis in a magnetic field. Results are explained on the basis of the theory of magnet–superconductor hybrids.  相似文献   

17.
A solution growth approach for zinc oxide (ZnO) nanowires is highly appealing because of the low growth temperature and possibility for large area synthesis. Reported reaction times for ZnO nanowire synthesis, however, are long, spanning from several hours to days. In this work, we report on the rapid synthesis of ZnO nanowires on various substrates (such as poly(ethylene terephthalate) (PET), silicon and glass) using a commercially available microwave oven. The average growth rate of our nanowires is determined to be as high as 100?nm?min(-1), depending on the microwave power. Transmission electron microscopy analysis revealed a defect-free single-crystalline lattice of the nanowires. A detailed analysis of the growth characteristics of ZnO nanowires as functions of growth time and microwave power is reported. Our work demonstrates the possibility of a fast synthesis route using microwave heating for nanomaterials synthesis.  相似文献   

18.
We report the first observation of piezoelectricity and ferroelectricity in individual Sb(2)S(3) nanowires embedded in anodic alumina templates. Switching spectroscopy-piezoresponse force microscopy (SS-PFM) measurements demonstrate that individual, c-axis-oriented Sb(2)S(3) nanowires exhibit ferroelectric as well as piezoelectric switching behavior. Sb(2)S(3) nanowires with nominal diameters of 200 and 100 nm showed d(33(eff)) values around 2 pm V(-1), while the piezo coefficient obtained for 50 nm diameter nanowires was relatively low at around 0.8 pm V(-1). A spontaneous polarization (P(s)) of approximately 1.8 μC cm(-2) was observed in the 200 and 100 nm Sb(2)S(3) nanowires, which is a 100% enhancement when compared to bulk Sb(2)S(3) and is probably due to the defect-free, single-crystalline nature of the nanowires synthesized. The 180° ferroelectric monodomains observed in Sb(2)S(3) nanowires were due to uniform polarization alignment along the polar c-axis.  相似文献   

19.
Singh AK  Kumar V  Note R  Kawazoe Y 《Nano letters》2005,5(11):2302-2305
We report results of ab initio calculations on silicon nanowires oriented along the [110] direction and show for the first time that these pristine silicon nanowires are indirect band gap semiconductors. The nanowires have bulk Si core and are bounded by two (100) and two (110) planes in lateral directions. The (100) planes are atomically reconstructed with dimerization in a manner similar to the (100) surface of bulk Si but the dimer arrays are perpendicular to each other on the two (100) planes. An interesting consequence of surface reconstruction is the possibility of polytypism in thicker nanowires. We discuss its effects on the electronic structure. These findings could have important implications for the use of silicon nanowires in nanoscale devices as experimentally [110] nanowires have been found to grow preferentially in the small diameter range.  相似文献   

20.
Rutile TiO2 nanowires anchored on silica were fabricated by annealing TiO2 nanoparticles dispersed on silicon or quartz substrate by means of a polystyrene nanosphere monolayer template at 1000 degrees C for 1 h without any catalyst. The diameter and length of the nanowires were 30-80 nm and 1-3 microm, respectively. The growth direction of the nanowires is [112]. The photocatalytic activities of TiO2 nanoparticles and anchored nanowires were evaluated. TiO2 nanowires had higher photocatalytic activity for rhodamine B than TiO2 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号