首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
配电网中准确的拓扑结构辨识对运行和控制具有重要意义,针对实际配电网拓扑结构变动的情况,搭建了可智能辨识配电网拓扑结构的深度学习模型。首先,生成不同拓扑结构下的配电网量测数据并进行数据预处理。其次,构建了融合CNN(卷积神经网络)、LSTM(长短期记忆网络)和Attention(注意力机制)的拓扑结构智能辨识模型,并结合历史量测数据对模型训练并测试。最后,在IEEE 33节点和PG&E69节点配电系统仿真算例中,验证了该基于CNN-LSTM-Attention模型的拓扑辨识方法相较于传统辨识方法在辨识精度上的优越性,实现了该模型的在线应用。  相似文献   

2.
为了实现配电网拓扑和线路参数精确辨识,考虑拓扑结构的变化,提出一种基于智能电表量测数据的配电网拓扑与线路参数联合在线辨识方法.首先,利用不同拓扑结构下的历史量测数据,分别建立基于支持向量机(SVM)的多分类模型和基于线性回归的拓扑与线路参数辨识初始模型.然后,以SVM多分类模型实现在线量测数据与拓扑结构间的映射,得到拓...  相似文献   

3.
杨秀  蒋家富  刘方  田英杰  李凡  吴裔 《电网技术》2022,(5):1672-1682
针对当前配电网拓扑变化频繁,拓扑结构实时获取困难等问题,文章提出基于注意力机制和卷积神经网络的配电网拓扑辨识方法。首先利用卷积神经网络挖掘量测信息和配电网拓扑结构之间的关系,学习其映射规则;考虑当前配网中同步相量测量装置(phasor measurement unit,PMU)和微型同步相量测量装置(micophasormeasurementunit,μPMU)等高级量测设备安装数量不足导致获取量测数据质量不高的问题,在卷积神经网络隐藏层中融入注意力机制,以增强模型鲁棒性;通过随机森林算法对特征数据集进行降维,降低模型时、空复杂度;最后,分别基于IEEE 33节点配电网和PG&E69节点配电网开展算例分析,以验证方法的可行性和优越性,并检验利用更少特征进行拓扑辨识的可能性。结果表明:所提方法具有良好优越性和鲁棒性,泛化能力强,在仅提供少量时间断面量测数据情况下便可实现配电网拓扑辨识,且对于辐射网和含环网络同样适用。  相似文献   

4.
基于AMI潮流匹配的中压配电网两阶段拓扑辨识   总被引:2,自引:0,他引:2  
中压配电网拓扑结构变更频繁,基于遥信生成的网络拓扑具有较大的不确定性。为此,提出了一种基于高级量测体系AMI(advanced measurement infrastructure)潮流匹配的辐射状中压配电网两阶段拓扑辨识方法。首先,建立了中压配电网拓扑辨识的改进混合整数二次规划MIQP(mixed-integer quadratic programming)模型,进行初步拓扑辨识;其次,以MIQP结果作为初始拓扑进行局部邻域搜索,采用图的树生成算法生成一阶、二阶邻居生成树,以AMI注入功率量测为负荷依次进行潮流计算,选择电压估计值与量测值最匹配的生成树作为最终拓扑辨识结果;在局部邻域搜索过程中舍弃排名靠后的拓扑以降低潮流匹配计算量。通过33节点配电网算例验证了所提方法的有效性。  相似文献   

5.
本文综合考虑量测数据之间以及量测数据与网络参数之间的电路关联关系,提出了复杂状态估计不良数据的前推回代追踪辨识方法。首先,基于节点度等于1的拓扑搜索原则和节点不平衡功率最小的解环原则,通过拓扑搜索,将电网分解成辐射网结构并形成电网的支路层次矩阵L及对应支路的首末端节点信息矩阵M,然后利用L和M矩阵和本文定义的不良数据判据进行功率和电压的同步前推回代计算和不良数据判断,最终实现参数错误、不良量测数据及拓扑错误的有效辨识。基于IEEE39节点算例系统的仿真验证了该方法的有效性。  相似文献   

6.
针对配电网的拓扑结构变化频繁的问题,提出了一种基于改进蝠鲼觅食优化支持向量机的配电网拓扑辨识方法.考虑到量测数据缺失的问题,提出了基于电压方差K近邻的缺失数据填补方法.利用改进蝠鲼觅食算法同时进行特征选择和支持向量机参数的优化,筛选出对配电网拓扑辨识最有效的部分电压幅值量测.所提方法仅需一个时间断面的部分电压幅值量测数据,且能处理不同类型的分布式电源,适用于量测不足的区县农村配电网,计算速度可满足在线应用需求.通过IEEE 33节点配电网和PG&E 69节点配电网验证了所提方法的有效性.  相似文献   

7.
网络拓扑辨识作为配电网运行和管理的基础,随着城市配电网结构的日趋复杂以及运行安全性和可靠性需求的日渐提高,配电网拓扑辨识面临着严峻挑战。为此,本文提出一种基于电压聚类排序的中压配电网拓扑在线辨识方法。首先梳理了配电网的典型拓扑结构,分析了配电网运行时拓扑的多样性和拓扑辨识的重要性;其次,分析了中压配电网电压的分布特征和相似性,通过挖掘节点电压相似性中蕴含的拓扑信息,利用均值漂移算法辨识分支、利用平均电压法辨识分支结构,实现对配电网拓扑结构的准确辨识;最后,采用某东部城市的负荷曲线,通过算例验证了所提拓扑辨识方法的有效性及优越性。  相似文献   

8.
分布式决策的智能保护控制是应对分布式电源广泛接入后中压配电网灵活性和安全性挑战的前瞻性技术。实现智能分布式决策的前提是每个智能终端(smart terminal unit, STU)均能快速辨识和跟踪所在线路的拓扑连接关系及其变化。对此,文中提出一种基于对等通信且具有高容错性的分布式拓扑辨识算法。配置在环网节点的STU无须预存馈线组静态拓扑,仅依靠本地量测以及与近邻终端的信息交换,通过规则判断的方式,就能实现对馈线组完整拓扑和开环方式的动态跟踪与辨识,减少算法对终端的配置要求。同时,算法仅须各STU交互基本的量测信息与判断信息,降低对通信条件的要求。算例表明该方法合理有效,且通过结合本地量测互校核和对侧连通性预判修正,可显著提高拓扑辨识对量测数据的容错能力。  相似文献   

9.
提出了一种基于局部量测信息的配网馈线低压无功补偿广域优化控制方法。首先采用负荷功率矩方法将馈线划分为若干无功补偿区域并规划低压无功补偿装置的位置,进而确定各补偿装置的理想注入无功;然后考虑无功分区平衡目标、配变容量约束以及电压安全约束,建立广域无功优化模型,在线优化计算并控制各无功补偿装置的最优投切量。该方法充分考虑了配网馈线无功功率的分区平衡,极大提高了低压无功补偿装置的利用率,降低了配电网的有功损耗,有显著的社会经济效益。采用某390节点实际系统验证了该方法的有效性和实用性。  相似文献   

10.
配电自动化不良数据辨识和配电网结线分析   总被引:4,自引:1,他引:3  
提出将柱上开关看成节点,将相邻2个节点间的馈线和配电变压器综合看成边的配电网简化模型。在此基础上提出例行辨识、突变量启动辨识与通信中断辨识3种配电网不良数据辨识和结线分析的方法。该方法能够在个别数据受到干扰时,得出正确的配电网拓扑结构。文中给出了4个典型实例。  相似文献   

11.
针对配电网线损管理中基础数据异常和冗余量大的问题,提出基于分割区域的配电网异常线损数据辨识与修正方法。考虑终端数据存在冗余量,利用卡尔曼滤波算法对终端冗余数据进行融合,再遍历配电网各线路节点配电变压器,采用局部异常因子算法检测运行数据;基于配电网拓扑关系,采用GN(Girvan-Newman)算法对异常节点进行区域分割;通过分析分割区域邻近节点量测数据和不平衡度指标,动态调整区域边界,直到分割区域满足估计的可观性条件,得到分割区域最终划分结果,并基于区域内节点量测模型、约束模型和估计模型求解异常数据。最后,以西北某省10 kV什新线、什金线为算例进行分析验证,结果表明所提方法可有效实现配电网异常线损数据的辨识及修正。  相似文献   

12.
配电网的拓扑结构在日常检修、异动和扩建过程中经常发生变化,加之配电网中实时量测数据和配置的传感器数量有限,开关缺乏实时遥测,这导致拓扑生成器常常不能有效获得配电网拓扑结构。目前常见的拓扑辨识方法并不能很好的适应配电网以上特点,因此为避免因配电网拓扑结构发生严重错误引起的配电网状态估计失真,提出了一种新的拓扑辨识方法。该方法基于匹配环路功率确定可能的拓扑结构,并根据公共量测值对可能的拓扑结构进行状态估计。依据状态评估结果与量测数值有最高匹配度,从而确定该拓扑结构为可信拓扑结构,即为实际拓结构。本文所提出的方法实现了对拓扑结构的量化评估,简化了拓扑辨识过程,减少了拓扑辨识过程的计算量,并通过相关案例验证了该方法的有效性和实用性。  相似文献   

13.
针对10kV配电网无功优化的需求,提出一种实用的综合无功优化配置方法。该方法以配电网所有节点为可能补偿安装点,以网损最小为目标,建立电压质量约束、补偿容量约束并考虑配电网中的不确定因素,最终获取理想的优化方案。首先获取理想的补偿安装节点及其容量,再选取其中补偿容量较大的几个重要节点作为无功补偿装置安装节点,进行无功补偿优化计算,获取各节点的补偿容量,提出补偿方案;采用PSASP仿真分析所提补偿方案的技术经济效能。应用案例结果表明所提方法具有良好的实际应用价值。  相似文献   

14.
明确配电网结构是配电网最优潮流、安全评估、网络重建、故障定位的基础。针对现有配电网拓扑识别方法缺乏结合现有网络结构参数和潮流信息,仅通过量测数据来进行拓扑识别效率低的问题,提出一种基于有限关键节点及Wasserstein距离的配电网拓扑识别方法。首先,利用子空间扰动模型证明配网拓扑变化时,可以利用有限的关键节点来进行拓扑识别,基于熵值法的混合K-Shell算法引入影响度概念,通过影响度与节点电气距离得出节点的重要度,确定配电网拓扑结构中的关键节点。其次,基于密度的噪声应用聚类算法通过电压、电流、有功、无功等4个特征来进行节点的聚类,将其他节点与关键节点进行类别归属,再结合Wasserstein距离得出节点间的连接关系从而得出配电网的拓扑结构。最后,通过IEEE 33节点算例和某小区实例,验证该方法的有效性。该方法极大地提高配电网拓扑识别效率与正确率,实现了配网拓扑结构的动态识别。  相似文献   

15.
针对低压配电网馈线末端节点电压偏低的问题,提出了低压配电网分散无功补偿与扩大线径协调优化计算模型。目标函数综合考虑了安装无功补偿装置和更换导线的投资成本以及降低配电网损耗的经济效益,约束条件包括配电网运行约束,以及无功补偿点补偿容量和扩大线径支路截面积的上下限约束。采用凸松弛技术对优化模型中的整数变量进行连续化处理,并结合问题特点降低需要引入整数变量的数目。根据低压配电网潮流计算结果选择电压损耗大的支路作为扩大线径候选线路,同时以所有负荷节点作为候选无功补偿点,计算得到分散无功补偿与扩大线径的协调优化方案。以某个实际低压配电台区为例,计算结果验证了所提出方法得到的协调优化方案比单纯无功补偿方案具有更高的经济效益,电压质量也更好。  相似文献   

16.
充分考虑10kV配电网络的实际特点,基于动态链表存储技术,对10kV配电网潮流计算的常规前推回代法进行了实用化改进.改进方法采用动态链表存储技术描述并自动存储配电网络树状结构,无需对网络节点和支路进行任何预编号等处理;结合10kV配电网络的两级电压特点,基于网络单线图,最小化迭代节点规模,使潮流迭代计算节点规模约减半;对多电源配电网中的PV节点,直接应用无功迭代法进行处理,无需其进行节点分裂.还考虑了配电变压器空载损耗、电阻压降的影响.改进方法具有较强的通用性和实用性,使用方便、网络拓扑功能强.可与目前广泛应用的10kV配电网线损理论计算软件实现网络参数的无缝连接.算例表明改进方法计算结果正确,收敛性稳定,计算存储量小,计算速度快.  相似文献   

17.
综合考虑中压配电网的技术、经济指标,以中压配电网安装无功补偿装置的单位投资收益最大和电网有功损耗最小为目标,构建了多目标混合无功优化模型。根据网损减小量对无功电流的灵敏度分析确定待补偿点集,利用基于Pareto最优前沿的多目标遗传算法优化无功补偿容量,同时采用精英保留策略、改进的交叉和变异概率策略、自适应编码策略增进算法效率。IEEE33节点和实际工程算例的仿真结果表明,该方法可以实现对中压配电网的多个技术经济指标的协同优化,可进一步提高中压配电网无功优化的效率和质量,证明了此方法的可行性和有效性。  相似文献   

18.
新型电力系统建设下配电网运行方式面临更加频繁的调整,导致配电网的拓扑与线路参数记录档案难以得到及时更新,为中压配网的运行状态分析带来了挑战。提出一种配电网拓扑参数未知场景下的中压用户窃电检测方法。基于电网运行机理选择支路阻抗作为窃电特征判断指标,并构建窃电检测模型;根据配电网运行特点建立了线性潮流模型,并通过简化模型快速求解特征参量;研究了窃电行为对特征参量变化的影响机理,并结合能量守恒定律,提出完整的窃电检测方案。以IEEE 33节点配电系统、IEEE 85节点配电系统和江西进贤某10 kV实际配电网作为算例,结果表明,所提方法在多种窃电场景下均可有效辨识窃电时段并精准定位窃电用户,同时对用电数据的量测误差表现出较强的鲁棒性。  相似文献   

19.
针对配电网负荷多变的特点,提出采用电容器对10kV配电网进行无功补偿时,采用分支线路末端配电变压器低压侧和主馈线相结合的优化补偿方式。以系统有功网损、电容器的安置费用加权最小为目标函数。根据配电网辐射状树形分布特征,首先在分支线路末端以提高线路功率因数确定电容器的补偿容量及其类型,然后在主馈线上依无功负荷的分布情况再确定电容器补偿的最佳位置和容量。潮流计算采用配电网广泛使用的前推回代法。最后,以实际电网为例,说明了该算法的可行性和优越性。  相似文献   

20.
提出一种计及电压不可行节点的配电网低电压治理方法。首先给出了配电网电压不可行节点的基本概念,然后在配电网电压无功控制分区的基础上,构建了考虑电压不可行节点的广域无功控制的低电压治理模型。该模型包含无功补偿薄弱区的电压控制模型和无功补偿非薄弱区的无功优化两个子模型。对应的目标函数分别为电压不可行节点的电压越下限量最少和网损最低,约束条件则在传统的无功优化模型上更新电压不可行节点的电压幅值安全下限值。为了提高求解效率,采用一种并行协同进化算法求解所建模型。通过杭州某实际10 kV 55节点配电网进行仿真分析,验证了所提方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号