首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
输电线路无人机航拍图像缺陷识别是维护线路安全运行的重要巡检手段,但目前的识别算法对于销钉、螺母等小目标缺陷存在识别精确度低、易漏判等问题。将Cascade R-CNN算法应用于输电线路缺陷检测中,利用ResNet101网络进行特性提取,增强的网络的特征提取能力,并利用多层级联检测器对输电线路小目标进行判别和分类。基于无人机航拍图像数据集进行实验,实验结果表明,相比于Yolov3检测器和Lighthead R-CNN检测器,Cascade R-CNN算法提高了小目标缺陷检测中的召回率和精确度。  相似文献   

2.
针对现有的无人机电力巡检中的目标检测算法小目标识别精度低、检测的元件及缺陷类型较为单一、检测速度和精度无法同时满足的问题,提出一种改进的EfficientDet目标检测算法,该算法应用于无人机电力巡检图像的数据挖掘,对高压输电线路上的绝缘子、防震锤、均压环、屏蔽环、鸟巢同时进行目标检测及缺陷定位.首先通过Imgaug数...  相似文献   

3.
《电网技术》2021,45(7):2821-2828,中插34
输电线路螺栓缺陷检测对电力系统安全可靠运行具有重要意义,但螺栓在巡检图像中具有特征不明显、尺寸小的特点,这给螺栓检测研究带来了一定挑战。随着直升机、无人机巡检技术和边缘计算的发展,传统巡检图像处理方法已满足不了实时检测的需求。针对上述问题,提出一种基于深度学习的输电线路螺栓检测系统。采用分级检测原则,首先利用SSD(single shot mutibox detector)算法定位存在缺陷螺栓的连接部位并切割出连接部位,增大螺栓在巡检图像中的占比,其次利用数据增强扩充数据集,最后利用YOLOv3算法检测缺陷螺栓。最终将边缘计算装置搭载在直升机、无人机上,实现输电线路螺栓缺陷实时检测。为验证该系统的鲁棒性,对不同光照强度下的巡检图像进行仿真。实验结果表明,该方法能够有效、精确地实现巡检图像中螺栓缺陷的实时检测。  相似文献   

4.
高压线路的安全运行是整个电网安全运行的基础之一,所以高压线路巡检是电网巡检工作的重中之重,但人工巡检总有盲区,从而导致高压线路缺陷无法被及时发现。针对该问题,提出基于嵌入式与目标检测网络的高压线路缺陷边端识别方法。该方法基于Mobilenet轻量化网络及SSD目标检测算法,完成高压线路缺陷边端识别,将检测出异物的图像发回云端,使巡检人员准确发现高压线路缺陷,及时进行线路巡检排查。该方法的识别准确率、样本召回率、模型大小及识别速率均可满足高压线路日常运维需求,且减少了90%的数据传输量,极大降低了之前工作人员需处理大量图像样本的压力。该方法已成功上线部署,准确指导高压线路相关的运维巡检工作。  相似文献   

5.
针对输电线路机巡影像缺陷识别中低漏报率的需求,提出了一种基于组合式深度目标检测框架的输电线路低漏报率缺陷识别方法.该方法首先利用典型目标检测算法在输电线路巡检图像数据集上进行训练,得到输电线路设备缺陷的特征提取网络;随后引入位置随机分布函数改进目标预测的方式,并利用自适应非极大值抑制判别器,对2个网络的特征提取结果进行...  相似文献   

6.
架空输电线路巡检是电网运维工作的一项重要内容,运维人员利用无人机进行线路巡视检测已成为电力巡检工作中的重要手段。本研究首先概述了无人机巡检任务中人机协同作业系统以及无人机智能自主作业系统的架构;其次,分析了当前架空输电线路缺陷巡检领域数据集状况以及数据扩增技术;然后,综述了基于深度学习的无人机图像缺陷检测典型方法以及评价指标,并对比总结了各种方法的优缺点;随后,讨论了无人机图像视觉检测方法中图像采集规范、数据集形式、缺陷检测算法专业化应用等对架空线路缺陷检测效果,指出了图像检测指标和类别定义在电力巡检专业化领域中的不足;最后,探讨了基于深度学习的无人机图像缺陷巡检任务的未来发展方向。  相似文献   

7.
为提高线路巡检效率、提高隐患目标识别准确度,针对目前无人机及有人机挂载激光雷达进行巡检的作业方式,本文提出激光雷达和可见光相机一体化应用的方法来提高巡检自动化程度、提高巡检精细度、作业效率及可靠性。首先,利用一次飞行同步采集巡检区域的激光点云数据和可见光影像数据,分别进行相应的预处理;然后,将点云数据和影像数据融合处理分析,实现输电线路隐患目标自动识别和精准定位。采用旋翼无人机实际巡检获取的输电线路激光点云数据和影像数据对该过程进行了验证,试验结果表明,基于无人机载多载荷的输电线路巡检具有较高的自动化程度和准确性,缺陷检测的水平距离误差为0.146 7 m,垂直距离误差为0.102 5 m,净空距离误差为0.1 57 5 m,精度优于当前输电线路巡检要求。  相似文献   

8.
无人机用于电力线路巡检可提高巡检效率和精度,节约运营成本。通过在无人机上搭载激光测距雷达和红外成像设备组成了输电线路巡检系统的硬件设备,在快速扩展随机树计算基础上开发了雷达避障算法,采用直方图均衡化的方法对系统红外图像进行处理,并在Android操作系统上开发了无人机巡检控制系统。应用结果表明,无人机在巡检时能够自动规避线路障碍,同时通过巡检影像能够清晰地看到线路缺陷, 证明了该巡检方法的有效性和可行性。  相似文献   

9.
结合华中电网某地区架空输电线路无人机可视化巡检工作的实际应用情况,详细分析了无人机在架空输电线路可视化巡检中的作业流程、巡检内容以及巡检技术要求,并针对在清晨、傍晚、阴霾等环境光线较暗情况下,无人机难以快速、精准、高效地开展架空输电线路可视化巡检、缺陷识别等难题,以图腾柱开关控制电路为核心,研究了一种可用于无人机在架空输电线路可视化巡检中的自动补光系统,该系统主要包括环境光线亮度实时检测模块、高低电平逆转模块、图腾柱开关控制电路、稳压模块、LED补光模块,并以多旋翼无人机搭载可见光巡检设备为测试平台,现场实践论证了该自动补光系统的可行性和高效性。  相似文献   

10.
为提高无人机巡检远距离架空线路缺陷识别的精度,提出了无人机巡检远距离架空线路缺陷识别技术。以远距离架空线路螺母销钉缺陷为识别对象,利用卷积神经网络对其进行训练后,将Inception-v3模型作为训练模型,提取架空线路螺母销钉缺陷训练数据特征;建立Softmax层和损失函数,形成新的架空线路螺母销钉缺陷分类输出层,从而达到无人机巡检远距离架空线路缺陷识别的目的。实验结果表明,所提技术既能保证高精度的识别效果,又降低了识别时间和漏报率。  相似文献   

11.
传统架空输电线路绝缘子缺陷检测一般通过人工巡检方式进行。架空输电线路的数量增长使巡检规模更加庞大、巡检环境更加复杂,放大了传统绝缘子缺陷检测方法人力成本高、检测效率低的不足。无人机(unmanned aerial vehicle, UAV)等新型巡线方式依靠深度学习目标检测算法识别架空输电线路绝缘子缺陷,能够有效应对人工巡检的不足,是绝缘子缺陷检测的发展趋势。鉴于此,围绕架空输电线路绝缘子缺陷检测场景,首先梳理常用的深度学习目标检测算法,比较不同算法的检测策略、检测精度与检测速度;然后结合云–边–端协同架构说明算法的改进需求与相应改进方法;最后针对现有绝缘子检测方面的不足,展望了输电线路绝缘子中多类型缺陷的识别问题,并在这一研究趋势下进一步探讨了模型边缘端轻量化与针对小样本数据下的算法研究价值。  相似文献   

12.
利用层次模型进行训练学习的线路设备缺陷检测方法   总被引:1,自引:0,他引:1  
无人机输电线路巡检中的线路部件缺陷自动化检测一直是一个难题,为了解决输电线路中螺母-销钉、防振锤部件缺陷的判别问题,提出了利用层次模型"与或图"对目标进行分解表达,建立部件之间的约束关系,构建多向的判别路径的方法。利用基于类Haar特征和级联Ada Boost分类器对目标基元进行识别,通过数据合成扩充数据样本用于训练,以提高分类器的训练性能。实验结果表明,该方法有效综合了识别检测技术,在少量样本的条件下,能有效地实现若干输电线路部件的缺陷判别,为输电线路缺陷检测任务提供了一种参考方法。  相似文献   

13.
无人机巡检方式在输电线路巡检中逐渐普及,但仅通过实时的人工观测效率低下。目前已有算法能够实现图像的自动识别,但检测速度慢,无法实现视频图像的处理。本文提出一种基于YOLO v3的输电线路缺陷快速检测方法。该方法首先建立YOLO v3目标检测模型,通过对训练样本库进行聚类分析得到目标候选区域的先验尺寸;通过调整损失函数来加快模型的训练过程,调整模型的学习方向。最后,通过建立输电线路缺陷样本库并进行训练,实现了输电线路缺陷检测。测试结果表明,相比于Faster RCNN、SSD等其他深度学习模型,基于YOLO v3的改进模型在速度上具有巨大的优势,且检测精度没有受到太大的影响,能够满足输电线路巡检视频的自动缺陷识别的需求。  相似文献   

14.
基于采集的高质量影像,针对无人机巡检影像特性,采用深度学习技术框架,研究输电线路设备及通道环境隐患的智能识别方法,实现销钉级微细颗粒缺陷的智能识别.由于目前无人机的图传带宽难以满足高清图像的实时传输,前端芯片的算力也难以满足缺陷识别的需求.因此,短期内自主巡检的图像还是在无人机自主巡检完成后,在服务器端调用人工智能算法进行处理.基于以上过程标准化采集的高质量巡检图像,可以降低后续设备缺陷识别的难度,提升设备识别的准确率.针对无人机巡检图像特征,采用深度学习Faster-RCNN(Faster-Region Convolution Neural Network)模型,实现了对无人机巡检图像中设备缺陷及通道隐患的智能识别.  相似文献   

15.
为满足电力线路应急处置和安全巡检业务的高效、自动化处理需求,设计研发了一套无人直升机多传感器电力线路安全巡检系统。首先,通过高精度同步授时与标定,统一机载紫外、红外、可见光以及激光传感器的时间、空间基准。其次,无人机通过机载多传感器同步采集输电线路的高精度3维激光点云、高分辨率航空影像、红外视频、紫外视频,进行多源数据的独立与融合处理,完成对线路通道的安全距离检测、线路设备异常发热及异常放电检测,实现对输电线路不同缺陷和隐患的智能诊断。最后输出标准诊断报表,以供现场勘察确认。为验证无人机多传感器巡检系统的功能,开展了实际带电运行线路巡检试验。巡检结果表明,无人机巡检系统对线路缺陷与隐患的检测结果与人工现场勘察结果一致。该系统能发现输电线路多种运行缺陷和安全隐患,为运行单位提供相应的检修维护决策依据,还能提供缺陷或隐患位置的可视化场景信息,方便人工辅助诊断和排查,提高输电线路巡检效率。  相似文献   

16.
利用无人机对高压输电线路巡检,并基于计算机视觉技术对巡检数据中的故障目标进行自动、准确检测是输电线路巡检领域中的重要研究方向,同时也是一个极具挑战性的课题。针对复杂巡检环境中待检测目标存在多尺度特性以及部分遮挡造成传统算法难以准确检测问题,提出一种基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测算法。首先,搭建YOLOv5检测网络,为了抑制复杂背景干扰,在其基础上引入空间与通道卷积注意力模型,以增强待检测故障目标的显著度;然后,将原始YOLOv5检测框架Neck中的FPN+PAN结构改为BiFPN结构,从而使目标多尺度特征能够有效融合;其次,为了解决待检测目标特征表达能力不足造成漏检和误检的问题,设计多尺度与同尺度特征的自适应加权融合模块,以增强检测网络对遮挡情况下故障目标的检测能力。最后,为了验证提出算法的有效性,利用某巡检部门近4年无人机巡检数据对算法进行验证。结果表明,提出的算法能够对复杂环境中输电线路上的多尺度故障目标实现精确检测,其平均检测精度可达96.8%。  相似文献   

17.
绝缘子作为输电线路中最重要的基础设施之一,对其准确识别是实现输电线路运行状态的自行监测与故障诊断的重要前提。为了能够对无人机航拍巡检中的绝缘子进行准确识别,提出基于红蓝色差和改进K-means算法的航拍绝缘子分类识别方法。首先,结合红蓝色差灰度化和加权灰度化,采用改进K-means算法对灰度图像进行聚类分割;其次,通过形态学滤波弥补分割缺陷;最后,根据绝缘子目标区域的红蓝色差均值,将绝缘子的分类问题简化为一维数据分类问题,从而实现分类识别。实验结果表明,该方法对复杂背景及不同拍摄角度下的绝缘子均能快速进行准确的分类识别,总识别率可达94.4%,为无人机巡检中输电线路绝缘子的分类识别提供了新的思路。  相似文献   

18.
配电线路巡检主要采用"人工走巡"方式,存在巡检耗时长、巡检质量低、缺陷易发展、记录易出错等问题。为解决上述问题,研究了全自动跟拍的多功能车载巡检技术,设计开发了配电网车载巡检系统。该系统以巡检车辆为移动平台,搭载集成多功能检测模块的"复眼探头",配置融合智能边缘算法的车内控制中心,实现线路自动追踪、数据同步采集、缺陷就地研判和数据实时回传。该系统在某配电线路巡检中进行了试点应用,各项功能均达到预期目标,具有工程实践和推广意义。  相似文献   

19.
柯澳  王宇聪 《广西电力》2022,(6):47-56+73
面向电力巡检的目标检测是指对无人机采集到的图像进行分析,检测电力线路中的部分缺陷,从而对线路及时检修,保证电力系统能正常工作。基于深度学习的目标检测算法能高效处理大量的图片数据,其处理结果能应用于电力目标的故障诊断等任务,且众多算法的检测精度和速度都优于传统人工设计的机器学习方法。本文对基于深度学习的目标检测算法在电力巡检上的应用进行了较为全面的综述,并对比分析各种算法的优缺点,总结电力巡检领域的发展现状,还讨论了目标检测算法的未来发展趋势以及应用在电力巡检领域所面临的挑战。  相似文献   

20.
为了提升架空线路无人机巡检效率,提高架空线路金具锈蚀缺陷智能检测效率,提出了一种基于深度学习的巡检架空线路销钉缺陷检测方法。由于架空输电线路的金具锈蚀缺陷智能检测存在环境背景大、目标小、拍摄角度和拍摄光线差异大等特点,采用图像预处理算法拓充数据集,将MobileNet替换YOLO的主干特征提取网络来提升算法的泛化能力和鲁棒性,并用实际巡检图像进行实验测试。测试集验证中,当置信度阈值取0.5时,P为0.92、R为0.84、AP为91.34%。结果表明,此方法对架空线路金具锈蚀缺陷有较好的检测效果,可以给设备健康状态评估提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号