首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
溅射功能对TbFeCo磁光薄膜特性的影响   总被引:1,自引:0,他引:1  
研究直流磁控溅射中溅射率对TbFeCo磁光薄膜成分均匀性、厚度均匀性、克尔旋转角θk和矫顽力Hc的影响。实验结果表明对于全金属互化物相(100%IM)TbFeCo合金靶。若采用适当的溅射功率,不但能够实现高速率溅射,而且可获得较好的成分和厚度均匀性,同时溅射所得薄膜具有大的克尔旋转角和合适的矫顽力。此工艺参数被用一磁光盘的生产。  相似文献   

2.
3.
溅射功率对TbFeCo磁光薄膜特性的影响   总被引:1,自引:0,他引:1  
研究直流磁控溅射中溅射功率对TbFeCO磁光薄膜成分均匀性、厚度均匀性、克尔旋转角θk和矫顽力Hc的影响。实验结果表明对于全金属互化物相(100%IM)TbFeCo合金靶,若采用适当的溅射功率,不但能够实现高速率溅射,而且可获得较好的成分和厚度均匀性,同时溅射所得薄膜具有大的克尔旋转角和合适的矫顽力。此工艺参数被用于磁光盘的生产。  相似文献   

4.
5.
本文简要介绍准分子激光溅射法制备高温超导薄膜的实验技术。重点阐述了近年来由大量实验研究所揭示出的激光溅射及成膜过程的一些基本特点和规律。同时,对准分子激光制膜保成份蒸镀这一独特优点的机制进行了深入的讨论。  相似文献   

6.
电化学制备CuxS薄膜特性的研究   总被引:2,自引:0,他引:2  
采用电化学方法在铜衬底上制备CuxS薄膜,在一定反应温度、电压、时间条件下,作为电极的铜片衬底可生成一层深蓝色的质量 地均匀的CuxS薄膜。实验发现,生成的CuxS薄膜主要居为Cu2S,具有良好的半导体性质,且其电导率与东膜退火温度有很大关系。通过XRD、SED等方法对样品的组织结构、光电性能进行了研究。  相似文献   

7.
溅射法制备纳米薄膜材料及进展   总被引:8,自引:0,他引:8  
贾嘉 《半导体技术》2004,29(7):70-73
溅射技术以其在制备薄膜中的独特优点,成为获得高性能纳米材料的重要手段.本文介绍了离子束溅射和磁控溅射技术的基本原理、方法及其在制备纳米材料中的应用和优点,以国内外这方面的最新进展.文章最后对我国纳米材料今后的应用及发展前景进行了展望.  相似文献   

8.
溅射后退火反应法制备GaN薄膜的结构与发光性质   总被引:4,自引:0,他引:4  
报道了用溅射后退火反应法在 Ga As (110 )衬底上制备 Ga N薄膜 .XRD、XPS、TEM测量结果表明该方法制备的 Ga N是沿 c轴方向生长的六角纤锌矿结构的多晶薄膜 .PL测量结果发现了位于 36 8nm处的室温光致发光峰.  相似文献   

9.
报道了用溅射后退火反应法在GaAs (110) 衬底上制备GaN薄膜.XRD、XPS、TEM测量结果表明该方法制备的GaN是沿c轴方向生长的六角纤锌矿结构的多晶薄膜.PL测量结果发现了位于368nm处的室温光致发光峰.  相似文献   

10.
采用磁控射频溅射法制备光波导用玻璃薄膜。本文重点分析了不同溅射条件如氧分压、基片种类、基片温度下制备的薄膜光学性能,通过比较,得到制备0.6328μm和1.55μm窗口下光波导器件用玻璃薄膜所需溅射条件。  相似文献   

11.
Optical and electrical properties have been measured for amorphous SiC films prepared by rf sputtering in a pure Ar atmosphere with a sintered 6H-SiC target. The absorption edge E0 determined from the relation of αhΝ = B(hΝ-E0)2 ranged from 1.45 to 1.80 eV depending on the film thickness and the substrate temperature. The room temperature electrical conductivity is in the range of 5.4×10−11 and 1.4×10−5 Ω−1cm−1. The absorption edge decreases and the conductivity increases with increasing film thickness. The absorption edge shifts to shorter wavelengths (blue shift) and the conductivity decreases during annealing below 400‡C for 60 min, whereas the absorption edge shifts to the longer wavelength side (red shift) and the conductivity increases during annealing at 800‡C It is proposed that the two annealing processes cause structural changes in amorphous SiC films, one of which involves removal of defects or voids while the other involves rearrangement or rebonding of the component atoms.  相似文献   

12.
p-CdTe thin films were prepared by spray pyrolysis under different ambient conditions and characterized using photoelectrochemical(PEC),X-ray diffraction(XRD),scanning electron microscopy,energy-dispersive analysis by X-ray(EDAX),and optical transmission studies.The different preparative parameters viz solution pH, solution quantity,substrate temperature and solution concentration have been optimized by the PEC technique in order to get good-quality photosensitive material.XRD analysis shows the polycrystalline nature of the film,having cubic structure with strong(111) orientation.Micrographs reveal that grains are uniformly distributed over the surface of the substrate indicating the well-defined growth of polycrystalline CdTe thin film.The EDAX study for the sample deposited at optimized preparative parameters shows the nearly stoichiometric Cd:Te ratio.Optical absorption shows the presence of direct transition with band gap energy of 1.5 eV.Deposited films exhibit the highest photocurrent of 2.3 mA,a photovoltage of 462 mV,a 0.48 fill factor and 3.4%efficiency for the optimized preparative parameters.  相似文献   

13.
Thin films of cadmium oxide have been produced by dc reactive magnetron sputtering in nitrogen and oxygen atmosphere. The structural, optical, and electrical characterization of these films are investigated. Structural analysis indicates that the films are polycrystalline and cubic. Composition analysis by Rutherford backscattering spectrometry has been made and it is found that the films contain excess cadmium and deficient oxygen. It is observed from the optical properties that the films possess a transmittance of about 85% in the visible and near infrared regions of the spectrum and direct bandgap values in the range 2.50 to 2.68 eV for films of thicknesses 146 to 177 nm. Electrical measurements point out that the films have resistivity, carrier concentration, and mobility in the range 2.65 to 6.64 × 10-6 Ωm, 1.60 to 2.35 × 1026 m-3, and 57.65 to 100.48 × 10−4 m2 v−1 s−1 respectively.  相似文献   

14.
p-CdTe thin films were prepared by spray pyrolysis under different ambient conditions and characterized using photoelectrochemical(PEC),X-ray diffraction(XRD),scanning electron microscopy,energy-dispersive analysis by X-ray(EDAX),and optical transmission studies.The different preparative parameters viz solution pH, solution quantity,substrate temperature and solution concentration have been optimized by the PEC technique in order to get good-quality photosensitive material.XRD analysis shows the polycrys...  相似文献   

15.
Polycrystalline Cadmium Telluride (CdTe) thin films were prepared on glass substrates by thermal evaporation at the chamber ambient temperature and then annealed for an hour in vacuum ~1×10−5 mbar at 400 °C. These annealed thin films were doped with copper (Cu) via ion exchange by immersing these films in Cu (NO3)2 solution (1 g/1000 ml) for 20 min. Further these films were again annealed at different temperatures for better diffusion of dopant species. The physical properties of an as doped sample and samples annealed at different temperatures after doping were determined by using energy dispersive x-ray analysis (EDX), x-ray diffraction (XRD), Raman spectroscopy, transmission spectra analysis, photoconductivity response and hot probe for conductivity type. The optical band gap of these thermally evaporated Cu doped CdTe thin films was determined from the transmission spectra and was found to be in the range 1.42–1.75 eV. The direct energy band gap was found annealing temperatures dependent. The absorption coefficient was >104 cm−1 for incident photons having energy greater than the band gap energy. Optical density was observed also dependent on postdoping annealing temperature. All samples were found having p-type conductivity. These films are strong potential candidates for photovoltaic applications like solar cells.  相似文献   

16.
Chen Huimin  Guo Fuqiang  Zhang Baohua 《半导体学报》2009,30(5):053001-053001-4
CdTe nanocrystalline thin films have been prepared on glass, Si and Al2O3 substrates by radio-frequency magnetron sputtering at liquid nitrogen temperature. The crystal structure and morphology of the films were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The XRD examinations revealed that CdTe films on glass and Si had a better crystal quality and higher preferential orientation along the (111) plane than the Al2O3. FESEM observations revealed a continuous and dense morphology of CdTe films on glass and Si substrates. Optical properties of nanocrystalline CdTe films deposited on glass substrates for different deposited times were studied.  相似文献   

17.
CdTe nanocrystalline thin films have been prepared on glass, Si and Al2O3 substrates by radio-frequency magnetron sputtering at liquid nitrogen temperature. The crystal structure and morphology of the films were charac-terized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The XRD examinations revealed that CdTe films on glass and Si had a better crystal quality and higher preferential orientation along the (111) plane than the Al2O3. FESEM observations revealed a continuous and dense morphology of CdTe films on glass and Si substrates. Optical properties of nanocrystalline CdTe films deposited on glass substrates for different deposited times were studied.  相似文献   

18.
Microstructural evolution during elevated temperature annealing of sputter deposited copper (Cu) films was investigated by electron backscatter diffraction (EBSD). Analysis of films was performed both in situ using a heating stage, and by ex-situ observation of microstructural evolution. It was noted that not only is the Cu film texture and grain size a function of film thickness, but also that the fraction of twin boundaries present in the material is strongly dependent upon film thickness. This is explained by means of a simple model that considers the energy of the system. Surface and interface energies, as well as grain boundary energies for random high angle boundaries and for twin boundaries (both coherent and incoherent planes) are used in the determination. The model was shown to accurately predict the twin boundary size in self-annealed films. This type of analysis also results in a texture map similar to that presented by Thompson,12 but incorporates the development and effect of twin boundaries, so that additional texture components (in addition to 111 and 100 fibers) are included.  相似文献   

19.
This paper reports the optimization of physical properties of cadmium telluride (CdTe) thin films with the application of thermal treatment. The films of thickness 650 nm were deposited on glass and indium tin oxide (ITO) coated glass substrates employing vacuum evaporation followed by thermal annealing in the temperature range 250–450 °C. The films were characterized using X-ray diffraction (XRD), source meter and atomic force microscopy (AFM) for structural, electrical and surface topographical properties respectively. The X-ray diffraction patterns reveal that films are polycrystalline with predominant zinc-blende structure having preferred reflection (111). The structural parameters are calculated and discussed in detail. The current–voltage characteristics show Ohmic behavior and the electrical conductivity is found to increase with annealing treatment. The AFM studies show that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing plays an important role to enhance the physical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.  相似文献   

20.
The aim of this work was to develop a deposition process for a high-dielectric constant tantalum pentoxide for integrated capacitors. Thin films were deposited reactively on glass wafers using a radio-frequency magnetron sputtering cluster tool at various O2/Ar flow ratios. By using 2 MeV 4He+ backscattering spectroscopy and X-ray diffraction, the films obtained showed a stoichiometric orthorhombic β-Ta2O5 phase at 20% O2 in the sputtering gas flow. With low-frequency measurements (f=100 kHz), a 200×200-μm2 square metal–insulator–metal (MIM) capacitor with copper electrodes and a 340-nm thick dielectric gave a capacitance density of 0.066 μF/cm2, with a quality factor (Q) of 650. The value of the relative permittivity (r) was approximately 25 determined from MIM capacitors of various sizes. The surface roughness of the 376-nm thick oxide film was found to be small: 0.255 nm. The largest measured capacitor (200×200 μm2) gave reasonable results at low frequencies. When the frequency was increased (100 kHz–20 GHz) only for the smaller capacitors (30×30 μm2) the capacitance remained constant. However, the Q values decreased of the smaller capacitors as a function of frequency. Processed tantalum pentoxide MIM capacitors possessed reasonable electrical properties below 2 GHz and good potential for further improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号