首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on domestic-developed triaxial servo-controlled seepage equipment for thermal–hydrological–mechanical coupling of coal containing methane, an experimental study was carried out to investigate mechanical property and gas permeability of raw coal, under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions. Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure. The research results show that, compared with the peak intensity of conventional triaxial loading, the ultimate strength of coal samples of triaxial unloading confining pressure was lower, deformation under loading was far less than unloading, dilation caused by unloading was more obvious than loading. The change trend of volumetric strain would embody change of gas permeability of coal, the permeability first reduced along with volumetric strain increase, and then raised with volume strain decrease, furthermore, the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure. When gas pressure was greater, the effective confining pressure was smaller, and the radial deformation produced by unloading was greater. When the unloading failed confining pressure difference was smaller, coal would be easier to get unstable failure.  相似文献   

2.
孤岛工作面煤体和巷道受周边开采扰动影响,煤体受循环荷载作用存在卸荷力学行为而表现出动态破坏特性.为探讨不同路径下煤体力学特性,利用TAW-2000三轴电液伺服刚性试验机分别进行常规三轴(T)、三轴循环荷载(TC)以及相应卸围压试验(TU、TCU),分析不同围压下煤体卸围压强度、变形、声发射事件以及能量耗散演化特征,开展...  相似文献   

3.
This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.  相似文献   

4.
This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes, roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of coal mines. The strata behavior during the high-intensity extraction in the water-rich coal seam is analyzed by employing the numerical simulation method and in situ monitoring. The results show that about 10 m ahead of the workface, the front abutment pressure peaks is at 34.13 MPa, while the peak of the side abutment pressure is located about 8 m away from the gateway with the value of 12.41 MPa; the height of the fracture zone, the first weighting step and the cycle weighting step are calculated to be 45, 50 and 20.8 m, respectively; pressure distribution in the workface is characterized by that the vertical pressure in the center occurs earlier and is stronger than those on both ends. Then, the results above are verified by in situ measurement, which may provide a basis for safe mining under similar conditions.  相似文献   

5.
Coal exhibits different creep behaviours when filled with different amounts of gas. Creep tests of coal filled with 0 and 0.5 MPa gas were performed, and strain under different axial stress was compared.The three creep constitutive models which were analysed using the method fitting experimental data for determining which creep model can reflect the creep process of the test best. The results show that the deformation of coal filled with 0.5 MPa gas is more higher than that of coal filled with 0 MPa gas under the same axial stress. Gas plays a positive effect on the deformation of coal process and will accelerate creep process. And gas will reduce coal intensity and change coal creep properties.Compared with Nishihara Model and Extensional Nishihara Model, Burgers Model can reflect the three stages of creep process of coal filled with gas better. The research results can contribute to reveal coal and gas outburst mechanism.  相似文献   

6.
Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures.  相似文献   

7.
To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.  相似文献   

8.
In this paper, the optimization design of the low strength mechanical test and orthogonal test have been analyzed in order to simulate the mechanical properties of thick and extra-thick coal seam accurately in a similar material simulation test. The results show that the specimen can reach a wider range of strength when cement has been used compared to that of gypsum, suggesting that cement is more suitable for making coal seam in similar material simulation tests. The uniaxial compressive strength is more sensitive to cement than coal or sand. The proportion of coal and sand do not play a decisive role in uniaxial compressive strength. The uniaxial compressive strength and specimen density decrease as the mass percent of coal and aggregate–binder ratio rise. There is a positive correlation between uniaxial compressive strength and density. The No. 5 proportion(cement: sand: water: activated carbon: coal = 6:6:7:1.1:79.9)was chosen to be used in the similar material simulation test of steeply dipping and extra-thick coal seam with a density of 0.913 g/cm~3 and an uniaxial compressive strength of 0.076 MPa which are in accordance with the similarity theory. The phenomenon of overburden stratum movement, fracture development and floor pressure relief were obtained during the similar material simulation test by using the proportion.  相似文献   

9.
The CO2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperature on the CO2 permeability of fractured coal with different fracture extents have not been investigated thoroughly. In this paper, the CO2 permeability of fractured coals sampled from a Pingdingshan coal mine in China and artificially fractured to a certain extent is investigated through undrained triaxial tests. The CO2 permeability is measured under the confining pressure with a range of 10–25 MPa, injection pressure with a range of 6–12 MPa and elevated temperature with a range of 25–70°C. A mechanistic model is then proposed to characterize the CO2 permeability of the fractured coals. The effects of thermal expansion, temperature-induced reduction of adsorption capacity, and thermal micro-cracking on the CO2 permeability are explored. The test results show that the CO2 permeability of naturally fractured coal saliently increases with increasing injection pressure. The increase of confining pressure reduces the permeability of both naturally fractured coal and secondarily fractured coal. It is also observed that initial fracturing by external loads can enhance the permeability, but further fracturing reduces the permeability. The CO2 permeability decreases with the elevation of temperature if the temperature is lower than 44°C, but the permeability increases with temperature once the temperature is beyond 44°C. The mechanistic model well describes these compaction mechanisms induced by confining pressure, injection pressure and the complex effects induced by elevated temperature.  相似文献   

10.
This study discusses a method of quantifying emissions from surface coal mining that has been trialled in Australia. The method is based on direct measurement of surface emissions from uncovered coal seams in mine pits, concurrent measurement of residual gas content of blasted coal in mine pits, and measurement of pre-mining gas content of the same seam from cores retrieved from exploration boreholes drilled away from active mining. The results from one of the mines studied are presented in this paper. In this mine, the pre-mining gas content of the target seam was measured using cores from an exploration borehole away from active mining. Gas content varied from 0.7 to 0.8 m3/t and gas composition varied from 16% to 21% CH4 (84–79% CO2). In-pit measurements included seam surface emissions and residual gas content of blasted and ripped coal. Residual gas content varied from 0.09 to 0.15 m3/t, less than twofold across the mine pit. Composition of the residual gas was in general 90% CO2 and 10% CH4, with slight variation between samples. Coal seam surface emissions varied from 1.03 to 7.50 mL of CO2-e per minute and per square meter of the coal seam surface, a sevenfold variation across the mine pit.  相似文献   

11.
In order to better understand the prevailing mechanism of CO2 storage in coal and estimate CO2 sequestration capacity of a coal seam and enhanced coalbed methane recovery (ECBM) with CO2 injection into coal, we investigated the preferential adsorption of CH4 and CO2 on coals. Adsorption of pure CO2, CH4 and their binary mixtures on high-rank coals from Qinshui Basin in China were employed to study the preferential adsorption behaviour. Multiple regression equations were presented to predict CH4 equilibrium concentration from equilibrium pressure and its initial-composition in feed gas. The results show that preferential adsorption of CO2 on coals over the entire pressure range under competitive sorption conditions was observed, however, preferential adsorption of CH4 over CO2 on low-volatile bituminous coal from higher CH4-compostion in source gas was found at up to 10 MPa pressure. Preferential adsorption of CO2 increases with increase of CH4 concentration in source gas, and decreases with increasing pressure. Although there was no systematic investigation of the effect of coal rank on preferential adsorption, there are obvious differences in preferential adsorption of gas between low-volatile bituminous coal and anthracite. The obtained preferential adsorption gives rise to the assumption that CO2 sequestration in coal beds with subsequent CO2-ECBM might be an option in Qinshui Basins, China.  相似文献   

12.
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.  相似文献   

13.
This research reviewed the mechanics and gas desorption properties of intact coal, and tested the crushing work ratios of different intact coals, and then, studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles. When a real-life outburst case is examined, the required minimum stress for intact coal outburst is estimated. The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m2. For the real-life case, more than 2300 MJ of transport work is needed, and 10062.09, 7046.57 and 5895.47 m3 of gas is required when the gas pressure is 1, 2 and 3 MPa, respectively. The crushing work exceeds the transport work and even reaches 13.96 times of the transport work. How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal. The strain energy is needed for the crushing work, and the required minimum stress is over 54.35 MPa, even reaching 300.44 MPa. These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range.  相似文献   

14.
This study presents a numerical investigation to assess the risk of coal bumps and produces a stress–relief technology using boreholes to mitigate risk during the extraction of an island longwall panel.Based on the geological condition in an island longwall panel in the Tangshan Coal Mine,Tangshan,China,a numerical FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions) model was established to determine and to map the zones in the panel with a high risk for coal bumps.The results of the numerical modeling show that the roof deformation starts to occur at more than 30 m ahead of the longwall face and the deformation starts to accelerate after a distance of 10 m in front of the longwall face.Large and rapid roof deformation is considered to be an important precursor of coal bump occurrence during the extraction of an island longwall panel.Based on the numerical results,a stress–relief technology using boreholes,which was employed to release abutment pressure,was investigated through numerical methods.The modeled results suggest that the peak stress concentration could be released by drilling boreholes in the zones prone to coal bumps.The effectiveness of the stress release increased with the borehole length and decreased with the borehole spacing.  相似文献   

15.
Non-pillar mining, top-coal caving and protected coal seam mining are the most popular mining methods in coal exploitation, and the different mining layouts will change the stress state and failure mechanism of coal in front of the working face. In this paper, mining-induced mechanical behaviors under three mining layouts have been simulated in the laboratory to investigate the effects of mining layouts on the deformation and strength of coal. Furthermore, the coal failure mechanism under different mining layouts is analyzed microscopically. The experimental results indicate that the stage characteristics of the coal deformation are obvious. Under the serial action of non-pillar mining, top-coal caving and protected coal seam mining layouts, the values of radial deformation, volume strain and Poisson’s ratio increase, while the peak strength and deformation modulus decrease at the same buried depth, and the peak strength under non-pillar mining, top-coal caving and protected coal seam mining is about 3.0, 2.5 and 2.0 times of the initial confining pressure, respectively. The results also indicate that the trend of the coal deformation decreases with the increase of the buried depth under the same mining layout, while the strength and deformation modulus increase, and the failure mechanism under three mining layouts is dominated with shear/tensile failure.  相似文献   

16.
As P-wave velocity is sensitive to the variations in coal reservoir parameters,it is possible to monitor the injected CO2through P-wave velocity during CO2sequestration in coal.However,the effects of CO2on the coal P-wave velocity under triaxial stress are not clearly discerned.In the present study,different boundary conditions and gases were utilised to investigate the factors affecting the P-wave velocity after the interaction of coal with CO2.Experi...  相似文献   

17.
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.  相似文献   

18.
In order to effectively control the dust at the transshipment point with foam-sol, this paper attempted to study the characteristics of dust diffusion at transshipment point and the foam-sol foaming device with diffusion outlet was also designed in this paper. To study the diffusion rules of coal dust, fluent discrete phase model was utilized in the numerical simulation, as the coal dust was thrown down at a horizontal velocity of 2.5 m/s. A foam-sol foaming device was designed, through which foaming agent could be automatically sucked into the Venturi by the negative pressure. The automatic controller was also equipped, which could transform the energy of the compressed air into the constant pressure difference so that the gelling agent could be qualitatively added into the gel container. The diffusion outlet that could spray out foam-sol in a continuous, conical and 3D manner was also designed. Moreover, this paper also carried out the contrast experiments on dust removal efficiency among water, aqueous foam and foam-sol. The results clearly show that the symmetrical whirlpools appeared below the inlet where the largest whirlpool diameter was 0.52 m, and the horizontal distance from swirl range to the inlet was approximately 0.69 m. By using the self-designed foaming device, the foaming was multiplied by 30 times and the volume ratio with water and foaming agent reached 95%:5%. In this context, the gas pressure was controlled at 0.3 MPa, with gas flow at 15 m3/h and water flow at 0.5 m3/h, with water pressure controlled between 0.34 and 0.36 MPa. The foam-sol has the highest dust removal efficiency than other agents.  相似文献   

19.
Compared to intact coal, tectonic coal exhibits unique characteristics. The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the mechanical and energy properties are analysed using experimental data. The results show that the stress–strain curve could be divided into four stages in a single cycle. The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to th...  相似文献   

20.
Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号