首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: It is assumed that disturbances of cellular ion homeostasis, especially an increase in the cytosolic Ca2+ concentration, are of decisive importance for hypoxic cell injury. The aim of this study is the determination of alterations in the cytosolic Ca2+, Mg2+, H+, Na+ and K+ concentration in cultured hepatocytes during hypoxia. METHODS: The alterations of ion homeostasis under hypoxic conditions were studied in primary cultures of isolated rat hepatocytes by using fluorescence microscopy. RESULTS: The measurements of cytosolic Ca2+ concentration showed no alterations during the first 3-4 h of hypoxia. About 1-2 h before cell injury became evident Ca2+ increased from 147 +/- 28 to 385 +/- 31 nM. Similarly the cytosolic Mg2+ concentration increased from 0.63 +/- 0.05 to 1.42 +/- 0.11 mM in a late stage of hypoxia. In contrast, the cytosolic Na+ concentration increased continuously from 16 +/- 2 mM at start to 76 +/- 9 mM after 5 h of hypoxic conditions. The cytosolic K+ concentration remained constant for 2 h (129 +/- 7 mM) but then decreased down to 31 +/- 18 mM. The intracellular H+ concentration increased slightly under hypoxic conditions, the pH decreased from 7.35 +/- 0.02 to 7.19 +/- 0.04. CONCLUSION: The results indicate that cytosolic Ca2+ plays only a minor role in the pathomechanism of hypoxic hepatocellular injury but suggest an important role of the cytosolic Na+ concentration in this process.  相似文献   

2.
The nature of the events whereby the reactive intermediates resulting from the bioactivation of bromobenzene and furosemide induce hepatotoxicity is unknown. To examine a role for disturbances in intracellular calcium homeostasis, secondary to a depletion in cellular reduced glutathione (GSH) and reduced protein thiols (PSHs), isolated mouse hepatocytes were exposed to cytotoxic concentrations of bromobenzene or furosemide. Cytosolic calcium concentration, as well as thiol status, was determined. The incubation of hepatocytes with 3.0 mM bromobenzene, and subsequent additions (1.2 mM) of the agent every hour, resulted in significant GSH depletion. The loss of plasma membrane integrity at 1.5 h preceded both a rise in the cytosolic Ca2+ concentration and depletion of total PSH content. Furosemide (1.0 mM) produced a 70% depletion in cellular GSH content in isolated hepatocytes. The initiation of cell damage occurred concurrently with both a rise in the cytosolic Ca2+ concentration and a depletion of total PSH content 4 h following furosemide addition. Since the increase in cytosolic Ca2+ did not precede cytotoxicity, these results do not support an initiating role for Ca2+ deregulation in bromobenzene and furosemide hepatotoxicities. In addition, depletion of PSH content did not correlate with bromobenzene- or furosemide-induced cytotoxicity.  相似文献   

3.
The repetitive spiking of free cytosolic [Ca2+] ([Ca2+]i) during hormonal activation of hepatocytes depends on the activation and subsequent inactivation of InsP3-evoked Ca2+ release. The kinetics of both processes were studied with flash photolytic release of InsP3 and time resolved measurements of [Ca2+]i in single cells. InsP3 evoked Ca2+ flux into the cytosol was measured as d[Ca2+]i/dt, and the kinetics of Ca2+ release compared between hepatocytes and cerebellar Purkinje neurons. In hepatocytes release occurs at InsP3 concentrations greater than 0.1-0.2 microM. A comparison with photolytic release of metabolically stable 5-thio-InsP3 suggests that metabolism of InsP3 is important in determining the minimal concentration needed to produce Ca2+ release. A distinct latency or delay of several hundred milliseconds after release of low InsP3 concentrations decreased to a minimum of 20-30 ms at high concentrations and is reduced to zero by prior increase of [Ca2+]i, suggesting a cooperative action of Ca2+ in InsP3 receptor activation. InsP3-evoked flux and peak [Ca2+]i increased with InsP3 concentration up to 5-10 microM, with large variation from cell to cell at each InsP3 concentration. The duration of InsP3-evoked flux, measured as 10-90% risetime, showed a good reciprocal correlation with d[Ca2+]i/dt and much less cell to cell variation than the dependence of flux on InsP3 concentration, suggesting that the rate of termination of the Ca2+ flux depends on the free Ca2+ flux itself. Comparing this data between hepatocytes and Purkinje neurons shows a similar reciprocal correlation for both, in hepatocytes in the range of low Ca2+ flux, up to 50 microM. s-1 and in Purkinje neurons at high flux up to 1,400 microM. s-1. Experiments in which [Ca2+]i was controlled at resting or elevated levels support a mechanism in which InsP3-evoked Ca2+ flux is inhibited by Ca2+ inactivation of closed receptor/channels due to Ca2+ accumulation local to the release sites. Hepatocytes have a much smaller, more prolonged InsP3-evoked Ca2+ flux than Purkinje neurons. Evidence suggests that these differences in kinetics can be explained by the much lower InsP3 receptor density in hepatocytes than Purkinje neurons, rather than differences in receptor isoform, and, more generally, that high InsP3 receptor density promotes fast rising, rapidly inactivating InsP3-evoked [Ca2+]i transients.  相似文献   

4.
The effects of tri-n-butyltin chloride (TBT) on ionic homeostasis on isolated trout hepatocytes were investigated by flow cytometry (FCM), using the Ca(2+)-sensitive and pH-sensitive fluorescent probes Indo-1 and SNARF-1, respectively. Cell viability was monitored concurrently. Treatment of hepatocytes with 1 and 5 microM TBT caused a rapid and sustained elevation of cytosolic free Ca2+ concentration [Ca2+]i and an important cytoplasmic acidification. These changes were dependent upon TBT concentration and were maintained over 60 min, the maximum exposure period investigated. At 0.5 microM TBT, there was a slight but not significant increase in [Ca2+]i and a significant reduction in intracellular pH (pHi) only after 60 min of exposure. A rise in [Ca2+]i and cytoplasmic acidification were observed before loss of viability was detectable. Experiments carried out in Ca(2+)-free medium suggest that TBT mainly mobilizes Ca2+ from intracellular stores in trout hepatocytes. The cytoplasmic acidification following TBT exposure seems to be caused by the combination of intracellular Ca2+ mobilization and by direct action of TBT. The present results suggest that ionic homeostasis perturbations could be early events in the mechanism of cell injury by TBT.  相似文献   

5.
The survival of rat cerebellar granule cells maintained in vitro is enhanced by a KCl-enriched medium. This effect is classically interpreted as resulting from a higher cytosolic calcium concentration. This implies the presence of voltage-dependent Ca2+ channels and a membrane potential that can respond to changes in external K+. Since previous studies cast a doubt on these two conditions, we reinvestigated the resting membrane potential and Ca2+ influxes in rat cerebellar granule neurones during the first week in vitro using a fluorescence imaging approach. Membrane potential was assessed with the fluorescent dye bis-oxonol, and intracellular free calcium with Fura-2. Resting potential was shown to progressively decrease from -40 mV at the first day in vitro to -60 mV at day 7. At all times in culture, as early as day 0, cells were depolarized when external KCl concentration was increased from 5 to 30 mM. This depolarization resulted in an increased cytosolic calcium concentration due to Ca2+ influx through L-type and N-type voltage-activated Ca2+ channels, functional at day 0. Gross estimations of the permeabilities of Na+ and Cl- were obtained at various times in culture by measuring the changes in resting potential brought about by a reduction of their external concentration. A progressive increase of the relative permeability to K+ ions seems to underlie the evolution of the resting potential with time.  相似文献   

6.
BACKGROUND: Oxygen radicals have been implicated as important mediators in the early pathogenesis of acute pancreatitis, but the mechanism by which they produce pancreatic tissue injury remains unclear. We have, therefore, investigated the effects of oxygen radicals on isolated rat pancreatic acinar cells as to the ultrastructure, cytosolic Ca2+ concentration and energy metabolism. METHODS: Acinar cells were exposed to an oxygen radical-generating system consisting of xanthine oxidase, hypoxanthine and chelated iron ions. Cell injury was assessed by LDH release and electron microscopy. Cytosolic Ca2+ levels and mitochondrial membrane potential were determined by flow cytometry; adenine nucleotide concentrations by HPLC. Mitochondrial dehydrogenase activity was measured by spectrophotometric assay. RESULTS: Oxygen radicals damaged the plasma membrane as shown by a 6-fold LDH increase in the incubation medium within 180 min. At the ultrastructural level, mitochondria were the most susceptible to oxidative stress. In correlation to the pronounced mitochondrial damage, the mitochondrial dehydrogenase activity declined by 70%, whereas the mitochondrial membrane potential was enhanced by 27% after 120 min. Together this may cause the 85% decrease in the ATP concentration and the corresponding increase in ADP/AMP observed in parallel. In addition, an immediate 26% increase in cytosolic Ca2+ was found, a change which could be inhibited by BAPTA, reducing cellular damage. CONCLUSION: Cytosolic Ca2+ synergizes with oxygen radicals causing alterations of the ultrastructure and energy metabolism of acinar cells which might contribute to the cellular changes found in early stages of acute pancreatitis.  相似文献   

7.
METHODS/RESULTS: Thioacetamide induced a severe perivenous necrosis followed by a hepatocellular regenerative response, when administered in a single dose of 6.6 mmol/kg to rats. As (Ca2+)i plays an important role in both toxic cell killing and cell proliferation, the disturbances in the basal cytosolic calcium as well as the levels of Ca2+ sequestered in the endoplasmic reticulum were determined in hepatocytes isolated at 0, 12, 24, 48 and 72 h after thioacetamide administration. The basal Ca2+ increased progressively, reaching a maximum at 24 h of the intoxication (205%, p < 0.001), while the microsomal sequestered Ca2+ decreased at 24 h to 16% (p < 0.001) when compared with untreated controls. Changes in the activity of glycogen phosphorylase alpha paralleled those of basal free calcium and showed the maximum value also at 24 h (291%; p < 0.001). Moreover, there was a close association in time between the basal concentration of Ca2+ and the inhibition of microsomal Ca(2+)-dependent ATPase activity. CONCLUSIONS: The significant decrease in the levels of GSH and protein thiols indicates that oxidative stress is involved in thioacetamide-induced cell injury, but these decreases did not precede changes in cytosolic Ca2+ level. In the sequence of events leading to hepatic cell injury and regeneration, thioacetamide mobilized hepatic (Ca2+)i via inhibition of microsomal Ca(2+)-ATPase which may have activated Ca(2+)-dependent mechanisms involved both in cell death and in acute mitogen response.  相似文献   

8.
BACKGROUND: Volatile anesthetics, such as halothane and isoflurane, have been reported to affect the endothelium mediated relaxation of vascular smooth muscle cells. Because the activity of the constitutive nitric oxide synthase in endothelial cells depends on the availability of intracellular Ca2+, there is a definite possibility that the observed inhibitory effect of volatile anesthetics involves an action on the agonist-evoked internal Ca2+ mobilization and/or Ca2+ influx in these cells. Therefore, a study was undertaken to determine how halothane and isoflurane affect the Ca2+ signalling process in vascular endothelial cells. METHODS: The effect of halothane and isoflurane on the Ca2+ response to bradykinin of bovine aortic endothelial (BAE) cells was investigated using the fluorescent Ca2+ indicator fura-2. Halothane or isoflurane was applied either to resting cells or after bradykinin stimulation. The agonist-evoked Ca2+ influx in BAE cells was estimated by measuring either the rate of fura-2 quenching induced by Mn2+ or the increase in cytosolic Ca2+ concentration initiated after readmission of external Ca2+ after a brief exposure of the cells to a Ca(2+)-free external medium. The effects of halothane on cell potential and intracellular Ca2+ concentration were measured in cell-attached patch-clamp experiments in which a calcium-activated K+ channel and an inward rectifying Ca(2+)-independent K+ channel were used as probes to simultaneously monitor the intracellular Ca2+ concentration and the cell transmembrane potential. In addition, combined fura-2 and patch-clamp cell-attached recordings were carried out, to correlate the variations in internal Ca2+ caused by halothane and the activity of the Ca(2+)-dependent K+ channels, which are known in BAE cells to regulate intracellular potential. Finally, a direct action of halothane and isoflurane on the gating properties of the Ca(2+)-activated K+ channel present in these cells was investigated in patch-excised inside-out experiments. RESULTS: The results of the current study indicate that the initial Ca2+ increase in response to bradykinin stimulation is not affected by halothane, but that pulse applications of halothane (0.4-2 mM) or isoflurane (0.5-1 mM) reversibly reduce the sustained cytosolic Ca2+ increase initiated either by bradykinin or by the Ca2+ pump inhibitor thapsigargin. In addition, halothane appeared to dose-dependently inhibit the Ca2+ influx evoked by bradykinin, and to cause, concomitant to a decrease in cytosolic Ca2+ concentration, a depolarization of the cell potential. Halothane failed, however, to affect internal Ca2+ concentration in thapsigargin-treated endothelial cells, which were depolarized using a high K+ external solution. Finally, halothane and isoflurane decreased the open probability of the Ca(2+)-dependent K+ channel present in these cells. CONCLUSIONS: These observations suggest that the effects of halothane and isoflurane on Ca2+ homeostasis in BAE cells reflect, for the most part, a reduction of the thapsigargin- or bradykinin-evoked Ca2+ influx, which would be consequent to a cellular depolarization caused by an inhibition of the Ca(2+)-dependent K+ channel activity initiated after cell stimulation.  相似文献   

9.
Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ mobilization leads to depletion of the endoplasmic reticulum (ER) and an increase in Ca2+ entry. We show here for the gonadotroph, an excitable endocrine cell, that sensing of ER Ca2+ content can occur without the Ca2+ release-activated Ca2+ current (Icrac), but rather through the coupling of IP3-induced Ca2+ oscillations to plasma membrane voltage spikes that gate Ca2+ entry. Thus we demonstrate that capacitative Ca2+ entry is accomplished through Ca(2+)-controlled Ca2+ entry. We develop a comprehensive model, with parameter values constrained by available experimental data, to simulate the spatiotemporal behavior of agonist-induced Ca2+ signals in both the cytosol and ER lumen of gonadotrophs. The model combines two previously developed models, one for ER-mediated Ca2+ oscillations and another for plasma membrane potential-driven Ca2+ oscillations. Simulations show agreement with existing experimental records of store content, cytosolic Ca2+ concentration ([Ca2+]i), and electrical activity, and make a variety of new, experimentally testable predictions. In particular, computations with the model suggest that [Ca2+]i in the vicinity of the plasma membrane acts as a messenger for ER content via Ca(2+)-activated K+ channels and Ca2+ pumps in the plasma membrane. We conclude that, in excitable cells that do not express Icrac, [Ca2+]i profiles provide a sensitive mechanism for regulating net calcium flux through the plasma membrane during both store depletion and refilling.  相似文献   

10.
Stimulation of hepatocytes with vasopressin evokes increases in cytosolic free Ca2+ ([Ca2+]c) that are relayed into the mitochondria, where the resulting mitochondrial Ca2+ ([Ca2+]m) increase regulates intramitochondrial Ca2+-sensitive targets. To understand how mitochondria integrate the [Ca2+]c signals into a final metabolic response, we stimulated hepatocytes with high vasopressin doses that generate a sustained increase in [Ca2+]c. This elicited a synchronous, single spike of [Ca2+]m and consequent NAD(P)H formation, which could be related to changes in the activity state of pyruvate dehydrogenase (PDH) measured in parallel. The vasopressin-induced [Ca2+]m spike evoked a transient increase in NAD(P)H that persisted longer than the [Ca2+]m increase. In contrast, PDH activity increased biphasically, with an initial rapid phase accompanying the rise in [Ca2+]m, followed by a sustained secondary activation phase associated with a decline in cellular ATP. The decline of NAD(P)H in the face of elevated PDH activity occurred as a result of respiratory chain activation, which was also manifest in a calcium-dependent increase in the membrane potential and pH gradient components of the proton motive force (PMF). This is the first direct demonstration that Ca2+-mobilizing hormones increase the PMF in intact cells. Thus, Ca2+ plays an important role in signal transduction from cytosol to mitochondria, with a single [Ca2+]m spike evoking a complex series of changes to activate mitochondrial oxidative metabolism.  相似文献   

11.
U73122 ((1-[6-(( 17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)exyl]-1H-p yrrole-2,5-dione)) is generally used as a selective inhibitor of phospholipase C (PLC) and the related rise in cytosolic Ca2+. Recently, by using hepatocytes, it was suggested that its action sites are different for PLC activation and increase in Ca2+ concentration. To verify whether U73122 has different sites for inhibiting PLC activation and calcium responses in human platelets, aggregation, Mn2+ influx, cytosolic Ca2+ increase and PLC activation were studied in response to thrombin and the synthetic agonist of the thromboxane receptor U46619 (9,11-dideoxy-9alpha,11alpha-methanoepoxyprostaglandin F2alpha). With both agonists, U73122 inhibited aggregation, Mn2+ influx and the enhancement of cytosolic calcium at concentrations of 2 microM or lower, while 10 microM was necessary to inhibit PLC activation. Our results suggested that U73122 is much more active in antagonizing Ca2+ channels, both the intracellular ones, which are activated by formation of inositol 1,4,5 P3 and those present on plasma membrane, than in reducing the activation of PLC.  相似文献   

12.
In pancreatic acinar cells, as in many other cell types, the tumour promoter thapsigargin (TG) evokes a significant increase of intracellular free Ca2+ ([Ca2+]i). The increases of [Ca2+]i evoked by TG was associated with significant changes of plasma membrane Ca2+ permeability, with [Ca2+]i values following changes in extracellular [Ca2+]. Plasma membrane Ca2+ extrusion is activated rapidly as a consequence of the rise in [Ca2+]i evoked by TG and the rate of extrusion is linearly dependent on [Ca2+]i up to 1 microM Ca2+. In contrast, the activation of the Ca2+ entry pathway is delayed and the apparent rate of Ca2+ entry is independent of [Ca2+]i. In the presence of 20 mM caffeine, which reduces the resting levels of inositol trisphosphate (InsP3), the increase of [Ca2+]i evoked by TG was significantly reduced. The reduction was manifest both as a decrease of the amplitude of the [Ca2+]i peak (30% reduction) and, more importantly, as a reduction of the apparent maximal rate of [Ca2+]i increase (from 12.3 +/- 1.0 to 6.1 +/- 0.6 nM Ca2+/s). The inhibition evoked by caffeine was reversible and the removal of caffeine in the continuous presence of TG evoked a further increase of [Ca2+]i. The amplitude of the [Ca2+]i increase upon caffeine removal was reduced as a function of the time of TG exposure. Addition of TG in the presence of 1 mM La3+, which is known to inhibit the plasma membrane Ca(2+)-activated adenosine triphosphatase, induced a much higher peak of [Ca2+]i. This increase was associated with an augmentation of the apparent rate of [Ca2+]i increase (from 12.3 +/- 1.2 to 16.1 +/- 1.9 nM Ca2+/s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The addition of the triose D-glyceraldehyde (5-20 mM) to HIT-T15 hamster insulinoma cells caused a rapid, marked depolarisation of the plasma membrane accompanied by a pronounced intracellular acidification, an increase in the cytosolic free calcium concentration [Ca2+]i and enhanced secretion of insulin. D-glyceraldehyde did not reduce the rate of efflux of 86Rb+ from loaded perifused cells. All of the above effects of D-glyceraldehyde were also observed in response to L-glyceraldehyde. The changes in membrane potential and intracellular pH (pHi) caused by D-glyceraldehyde were unaffected by the glycolytic inhibitor iodoacetate, by K(+)-channel blockers (tolbutamide and tetraethylammonium), or by inhibitors of the transport of lactate (alpha-fluorocinnamate), alanine (methylaminoisobutyrate) or glucose (phloretin, phlorrizin). The glyceraldehyde-induced depolarisation and acidification were also observed in the absence of extracellular Ca2+ or Na+. The increase in [Ca2+]i evoked by D-glyceraldehyde was reversed by removal of Ca2+ from the medium. The formation of lactate by HIT-T15 cells was not significantly increased by addition of 10 mM D-glyceraldehyde or L-glyceraldehyde. In contrast, 10 mM glucose caused an approximately fourfold rise in lactate production. The oxidation of D-glyceraldehyde by HIT-T15 cells was also extremely modest compared to glucose oxidation by these cells. These results suggest that the stimulation of HIT-T15 cells by either D-glyceraldehyde of L-glyceraldehyde does not require metabolism of the triose within the cell and may not involve closure of nucleotide-sensitive K+ channels. We propose that the electrogenic transport of glyceraldehyde across the plasma membrane, possibly via H+ cotransport, might lead to depolarisation and hence to Ca2+ entry into the cell.  相似文献   

14.
In T cells CD3 monoclonal antibodies mediate an elevation of cytosolic Ca2+ concentration due to a release from internal stores and also due to an entry from extracellular medium, the mechanism of which is not clearly elucidated. Previous studies on several cell types have reported that depleting intracellular Ca2+ stores with inhibitors of the reticulum Ca(2+)-ATPase resulted in an increased plasma membrane permeability to calcium ions. It has been suggested that emptying the reticulum triggers a Ca2+ influx from extracellular medium, independent of phosphoinositide hydrolysis. To document the physiological relevance of such a mechanism, we compared CD3- and thapsigargin-induced sustained increase of cytosolic Ca2+ concentration in Jurkat T cells with regard to their sensitivity to internal and external Ca2+ level and to several inhibitors which do not affect the release of internal stores. We show that (1) there was no additivity of the two effects; (2) both CD3- and thapsigargin-evoked Ca2+ influx were inhibited when membrane was depolarized by either gramicidin or a high potassium concentration; and (3) Ca2+ influx was abrogated by cytochrome P450 inhibitors such as lipoxygenase inhibitors or imidazole antimicotic drugs. CD3 mAb and thapsigargin thus triggered the same signaling events, probably involving a cytochrome P450, to transmit information from depleted endoplasmic reticulum to the plasma membrane.  相似文献   

15.
Endothelin-1 (ET-1) is a potent vasoactive peptide which generally exerts its effect on target cells by increasing [Ca++]i. Both vasoconstriction (resulting in an increase in perfusion pressure) and increased [Ca++]i are actions of ET-1 that may result in cholestasis. Single-pass isolated perfused rat liver (IPRL) were used, and [Ca++]i was measured in both populations of hepatocytes and single cells. ET-1 (0.1-100 nM) induced a dose-dependent increase in perfusion pressure and decrease in bile flow. Perfusion pressure increased by 112% (p < 0.001) and bile flow decreased by 17% (p < 0.008) in response to 2 nM ET-1. At this concentration of ET-1, but not at higher concentrations, the cholestasis was abolished (p > 0.18 vs basal) and the rise in perfusion pressure was decreased (by 62%; p < 0.002) by the vasodilator papaverine. This ET-1 concentration also had no measurable effect on [Ca++]i in isolated hepatocytes. Taken together these findings indicate that ET-1 inhibits bile flow in IPRL and suggests that this effect is mediated by vasoconstriction and not by changes in hepatocyte cytosolic Ca++.  相似文献   

16.
The increase in cytosolic free Ca2+ concentration ([Ca2+]i) seen in submandibular cells of early postnatal rats following exposure to acetylcholine (ACh) is larger than in cells of adult rats. To elucidate possible reasons for this difference, we compared Ca2+ movements through Ca2+ pumps in both types of cells using Ca(2+)-sensitive fluorescent probe fura-2 and the radiotracer 45Ca2+. Ca2+ release induced by endoplasmic reticulum (ER) Ca(2+)-pump inhibitor thapsigargin (TG) was significantly smaller in neonatal cells than in adult cells, whereas the inositol 1,4,5-trisphosphate (IP3)-elicited Ca2+ release was comparable in both cell types. This suggests that although the size of the IP3-sensitive Ca2+ pool is adequate in immature cells, the activity of TG-sensitive Ca2+ pump in this pool is lower. The activity of the plasma membrane (PM) Ca(2+)-pump, measured by extrusion of 45Ca2+, was also significantly lower in immature cells. These results indicate that both ER and PM Ca2+ pumps may be functionally underdeveloped in immature cells, and that the enhanced increase of [Ca2+]i seen in response to ACh in immature cells may be partially, if not completely, due to a reduced capacity for removal of Ca2+ from the cytosol by active mechanisms.  相似文献   

17.
Sustained (noninactivating) outward-rectifying K+ channel currents have been identified in a variety of plant cell types and species. Here, in Arabidopsis thaliana guard cells, in addition to these sustained K+ currents, an inactivating outward-rectifying K+ current was characterized (plant A-type current: IAP). IAP activated rapidly with a time constant of 165 ms and inactivated slowly with a time constant of 7.2 sec at +40 mV. IAP was enhanced by increasing the duration (from 0 to 20 sec) and degree (from +20 to -100 mV) of prepulse hyperpolarization. Ionic substitution and relaxation (tail) current recordings showed that outward IAP was mainly carried by K+ ions. In contrast to the sustained outward-rectifying K+ currents, cytosolic alkaline pH was found to inhibit IAP and extracellular K+ was required for IAP activity. Furthermore, increasing cytosolic free Ca2+ in the physiological range strongly inhibited IAP activity with a half inhibitory concentration of approximately 94 nM. We present a detailed characterization of an inactivating K+ current in a higher plant cell. Regulation of IAP by diverse factors including membrane potential, cytosolic Ca2+ and pH, and extracellular K+ and Ca2+ implies that the inactivating IAP described here may have important functions during transient depolarizations found in guard cells, and in integrated signal transduction processes during stomatal movements.  相似文献   

18.
We have previously shown [Papadimitriou JC. Ramm LE. Drachenberg CB. Trump BF. Shin ML. (1991) J. Immunol., 147, 212-217] that formation of lytic C5b-9 channels on Ehrlich ascites tumor cells induced rapid depletion of adenine nucleotides associated with prelytic leakage preceding cell death. Extracellular Ca2+ concentration ([Ca2+]e) reduction by chelation markedly delayed the onset of cell death, although the adenine nucleotide leakage was enhanced. In the present study, we examined the temporal relationships between ionized cytosolic Ca2+ ([Ca2+]i), mitochondrial membrane potential (delta psi m) and cell death in individual cells by digital imaging fluorescence microscopy (DIFM), during the earliest phase of C5b-9 attack. The results showed an immediate, > 20-fold rise in [Ca2+]i, rapidly followed by dissipation of delta psi m and subsequent acute cell death. These events were markedly delayed by chelation of Ca2+e, but not by nominally Ca2+ free medium. Differing from previous reports indicating propidium iodide labeling of viable cells bearing C5b-9 channels, with DIFM we observed nuclear fluorescence with that marker only in association with cell death. These findings indicate that Ca2+ influx through lytic C5b-9 channels is responsible for the massive increase in [Ca2+]i, as well as for the rapid loss of delta psi m, followed by acute cell death. When this [Ca2+]i increase is prevented, the cell death is probably related to metabolic depletion.  相似文献   

19.
BACKGROUND: Ca2+ waves allow effective delivery of intracellular Ca2+ signals to cytosolic targets. Propagation of these regenerative Ca2+ signals probably results from the activation of intracellular Ca2+ channels by the increase in cytosolic [Ca2+] that follows the opening of these channels. Such positive feedback is potentially explosive. Mechanisms that limit the spontaneous opening of intracellular Ca2+ channels are therefore likely to have evolved in parallel with the mechanism of Ca2+-induced Ca2+ release. RESULTS: Maximal rates of 45Ca2+ efflux from permeabilised hepatocytes superfused with medium in which the [Ca2+] was clamped were cooperatively stimulated by inositol 1,4,5-trisphosphate (IP3). A minimal interval of approximately 400 msec between IP3 addition and the peak rate of Ca2+ mobilisation indicate that channel opening does not immediately follow binding of IP3. Although the absolute latency of Ca2+ release was unaffected by further increasing the IP3 concentration, it was reduced by increased [Ca2+]. CONCLUSIONS: We propose that the closed conformation of the IP3 receptor is very stable and therefore minimally susceptible to spontaneous activation; at least three (probably four) IP3 molecules may be required to provide enough binding energy to drive the receptor into a stable open conformation. We suggest that a further defence from noise is provided by an extreme form of coincidence detection. Binding of IP3 to each of its four receptor subunits unmasks a site to which Ca2+ must bind before the channel can open. As IP3 binding may also initiate receptor inactivation, there may be only a narrow temporal window during which each receptor subunit must bind both of its agonists if the channel is to open rather than inactivate.  相似文献   

20.
The Ca2+ mobilization across the neuronal membrane is regarded as a crucial factor in the development of neuronal damage in ischemia. Because glucocorticoids have been reported to aggravate ischemic neuronal injury, the effects of dexamethasone on ischemia-induced membrane depolarization, histologic outcome, and changes in the intracellular Ca2+ concentration in the gerbil hippocampus were examined in vivo and in vitro. The effects of metyrapone, an inhibitor of glucocorticoid synthesis, were also evaluated. Changes in the direct-current potential shift in the hippocampal CA1 area produced by transient forebrain ischemia for 2.5 minutes were compared among animals pretreated with dexamethasone (3 microg, intracerebroventricularly), metyrapone (100 mg/kg, intraperitoneally), and saline. The histologic outcome was evaluated 7 days after ischemia by assessing the delayed neuronal death in the hippocampal CA1 pyramidal cells of these animals. A hypoxia-induced intracellular Ca2+ increase was evaluated by in vitro microfluorometry in gerbil hippocampal slices, and the effect of dexamethasone (120 microg/L in the medium) on the cytosolic Ca2+ accumulation was examined. The effect in a Ca2+-free ischemialike condition was also investigated. Preischemic administration of dexamethasone reduced the onset latency of ischemia-induced membrane depolarization by 22%, and aggravated neuronal damage in vivo. In contrast, pretreatment with metyrapone improved the histologic outcome. The onset time of the increase in the intracellular concentration of Ca2+ provoked by in vitro hypoxia was advanced in dexamethasone-treated slices. The Ca2+-free in vitro hypoxia reduced the elevation compared with that in the Ca2+-containing condition. Treatment with dexamethasone facilitated the increase on both the initiation and the extent in the Ca2+-free condition. Aggravation of ischemic neuronal injury by endogenous or exogenous glucocorticoids is thus thought to be caused by the advanced onset times of both the ischemia-induced direct-current potential shift and the increase in the intracellular Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号