首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 951 毫秒
1.
为解决某加工中心电主轴的热误差补偿问题,建立预测精度高、鲁棒性强的热误差补偿模型。搭建实验台,利用美国雄狮回转误差分析仪采集电主轴的温度场和热误差数据。介绍麻雀搜索算法(SSA)原理、具体优化流程。采用SSA优化BP神经网络的权值和阈值,建立SSA-BP神经网络预测模型。与之前建立的BP神经网络预测模型相比,优化后预测效果更优,为电主轴热误差建模提供新的思路。  相似文献   

2.
王胜  胡世帆  江晓亮  徐峰  吴军 《机床与液压》2020,48(16):126-131
为降低机床热误差对数控加工精度的影响,提高灰色模型GMC(1,N)的预测精度,将布谷鸟搜索(CS)算法引入GMC(1,N)灰色模型中,用于优化灰色模型GMC(1,N)的生成系数,构建了基于CS-GMC(1,N)的数控机床热误差预测模型。以小型三轴立式数控铣床为研究对象进行了主轴热误差实验,热误差预测性能分析结果表明:CS-GMC(1,N)模型的预测精度高于PSO-GMC(1,N)模型,为机床主轴热误差建模及后续热误差补偿提供了参考。  相似文献   

3.
为降低机床热误差对数控加工精度的影响,提高灰色模型GMC(1,N)的预测精度,将布谷鸟搜索(CS)算法引入GMC(1,N)灰色模型中,用于优化灰色模型GMC(1,N)的生成系数,构建了基于CS-GMC(1,N)的数控机床热误差预测模型。以小型三轴立式数控铣床为研究对象进行了主轴热误差实验,热误差预测性能分析结果表明:CS-GMC(1,N)模型的预测精度高于PSO-GMC(1,N)模型,为机床主轴热误差建模及后续热误差补偿提供了参考。  相似文献   

4.
魏弦 《机床与液压》2018,46(3):103-107
当实际工况与建模工况存在差异时,传统的热误差模型往往表现出较差的鲁棒性和预测精度,主要原因在于建模数据的局限性和模型的未建模动态。为了改善上述状况,提出了一种基于数据驱动的数控机床主轴补偿模型。此模型采用无模型自适应控制算法建模,结合机床运行中生成的数据(温度数据和误差数据)对热误差模型进行实时修正,使模型能快速适应新的加工工况,从而提高模型的鲁棒性。在一台数控车床主轴上进行了试验验证,结果表明:无模型自适应控制与多元回归模型比较,其标准差、最大残差和误差平方和分别提高了41%、62%和56%,此模型的鲁棒性和预测效果好。同时,此方法为大数据在机床主轴热误差补偿中的应用奠定了基础。  相似文献   

5.
单一工况条件下数控机床主轴热误差模型无法准确预测其它工况下的热误差。通过研究分析支持向量机回归的算法和参数的关系,提出一种经过遗传算法(GA)在多工况条件下优化的支持向量机(SVM)的建模方法。以一台数控车床为研究对象,进行热误差测量实验,利用电涡流位移传感器和温度传感器同步测量机床主轴两个方向热误差和温度变化数值,获取两种工况的建模数据。运用遗传算法对SVM的惩罚函数、核函数参数和不敏感损失函数进行多工况条件下的优化选择,建立机床主轴热误差补偿模型。通过热误差建模实验验证,该方法在工况一的残差为0.838μm,工况二的残差为0.653μm,在保持较高预测精度的同时,能在两种工况下进行有效的热误差预测,使热误差补偿更适合实际加工环境。  相似文献   

6.
热关健点的选择和热误差建模技术是决定热误差补偿是否有效的关键,对提高数控机床的加工精度至关重要.为了实现对数控机床热误差的补偿控制,文章利用模糊C均值(FCM)聚类方法,对机床上布置的温度测点进行优化筛选,将温度变量从20个减少到4个,然后给出了基于RBF热误差补偿建模方法.通过建模实例表明,文章提出的建模方法,在保证补偿模型精度的同时有效减少了温度测点,降低了变量耦合影响,并提高了补偿模型的鲁棒性.  相似文献   

7.
为消除数控微磨床热误差对加工精度的影响,提出了基于多元回归理论的数控微磨床热误差在线补偿方法。针对自行设计的数控微磨床建立热误差模型,采用TC-3型温度测试仪和激光干涉仪分别获取微磨床热敏感点的温度数据与刀具主轴变形量;根据多元回归理论,通过计算判定系数和残差平方和来选取热误差模型的最佳变量组合。实验结果表明:运用多元回归理论,以最佳变量组合来建模,能够显著提高热误差建模精度。微磨床刀具主轴的径向热误差由8μm减少至1μm以内。  相似文献   

8.
为提高灰色模型在加工误差预测补偿控制中的应用效果,针对机械加工误差的特点,提出了一种基于等维新息GM(1,1)模型和背景值定权生成相结合的建模方法,利用加工测量数据实现灰色模型维数和背景值权系数的优化选择。结果表明,这种方法能减小原始序列随机性对模型的影响,增强灰色预测模型的适应性,提高加工误差的预测精度。  相似文献   

9.
针对机床电主轴在高速运转时内部发热造成的热误差问题,对比BP、RBF神经网络方法,采用一种基于GMDH神经网络的电主轴热误差建模方法。以某型号高速数控机床电主轴为研究对象进行热误差实验,通过利用温度传感器和电涡流位移传感器分别采集主轴温度和轴向热位移数据,运用数据处理群集方法(GMDH)建立主轴轴向热误差预测模型。经过数据对比表明:该方法较传统的神经网络方法具有学习速度快、获得全局最优解、泛化性能好、拟合预测精度高等优点。  相似文献   

10.
为了提高数控机床的加工精度,文章以精密四轴数控平台为研究对象,采用PT100、激光干涉仪等仪器对X、Z轴的温度、定位误差进行测量与分析,研究精密四轴数控平台定位误差与温度之间的变化规律。运用支持向量回归机建立X、Z轴的热误差模型,利用网格搜索法对支持向量回归机热误差模型进行参数寻优,确定惩罚参数c和核函数参数g的最优参数值。在热平衡状态下,根据BP神经网络、支持向量回归机热误差模型分别计算出X、Z轴定位误差的预测值与测量值对比曲线,对比曲线和数据分析表明支持向量回归机的预测精度较高,其X、Z轴拟合偏差带宽均不超过0.6μm。依据支持向量回归机热误差模型的预测数据进行补偿实验,数控平台X轴的定位误差降低了89.55%,Z轴定位误差降低了85.67%。实验结果证明支持向量回归机建模方法具有较高的预测精度、泛化能力、补偿精度和鲁棒性。  相似文献   

11.
热误差是精密机床最主要的误差源之一。主轴是机床的关键部件,其热误差直接影响机床的加工精度。文章以某型号精密卧式加工中心主轴为对象,对其温度场和热变形进行了仿真分析。根据仿真结果发现主轴轴向热变形更严重,并结合机床结构确定温度传感器布置位置。在此基础上,对不同转速下主轴部分位置温度和轴向热误差进行现场测试。运用最小二乘法建立热误差补偿模型,直接结合机床FANUC数控系统实施主轴轴向热误差补偿。经实验验证,补偿后主轴轴向热误差减小了85%以上。  相似文献   

12.
新设计的滑枕热伸长补偿机构消除了滑枕达到热平衡之前因热变形造成的瞬态热误差。通过试验,测出机床达到热平衡后主轴的温度误差和机床对应的温度场,并利用最小二乘法拟合出该误差和温度值之间的数学模型,将数学模型输入数控系统中进行机床主轴的稳态热补偿,即温度误差补偿。这两种热补偿相结合的方式进一步提高了机床的加工精度,保证了数控龙门柔性生产线各种零件的加工精度要求。  相似文献   

13.
针对影响机床热误差建模的温度场分布问题,提出一种热模态分析方法,对机床热误差建模温度测点进行优化选择。以数控机床主轴温度场分析为例,利用热模态方法得到主轴各模态的时间常数、温度场及热变形模态形状,从而确定温度测点的最优位置。并通过实验验证了所建立模型的准确性与鲁棒性。  相似文献   

14.
为了提高数控机床加工精度,消除数控机床热误差对加工精度的影响,文章提出了基于GA-SVR(遗传算法-支持向量回归机)的数控机床热误差建模方法.为了构建机床的热误差模型,首先采用温度传感器与位置传感器测量机床的温度与对应的机床主轴变形量.其次把获得的数据进行支持向量回归机建模训练,同时使用遗传算法寻找支持向量回归机相关参数的最优值.最后建立机床热误差模型,并验证模型的准确度.结果表明,基于GA-SVR的数控机床热误差建模方法具有精度高和鲁棒性强的特点.  相似文献   

15.
数控机床热变形误差补偿技术   总被引:1,自引:0,他引:1  
热变形误差是影响机床加工精度的重要因素之一,通过实时热变形误差补偿可以提高数控机床加工精度.本文在分析产生机床热误差的原理的基础上, 探讨了热误差的测量方法,利用多元线性回归方法建立了机床热变形与温升之间的数学模型.应用数控系统的PLC补偿功能,对XH178加工中心加工过程中的热误差进行了实时补偿.实验结果表明误差补偿量达到80%以上.  相似文献   

16.
数控机床的热变形误差是影响其加工精度的主要因素。针对当前机床热误差难以解决的问题,提出一种融合模糊聚类理论、灰色关联理论和多元线性回归理论的热误差建模及补偿原理,通过应用于实验室自主研制的AGPM,经机床温度场的测点优化分析、多元线性回归求解,建立了精确的热误差补偿模型。经补偿验证,该原理理论正确、简单易行、稳定可靠,可以大幅减小机床的热变形误差。  相似文献   

17.
林伟铖  尹玲  张斐  吕峥 《机床与液压》2023,51(13):58-62
为了提高热误差模型的预测精度和减少布置在机床内部的温度传感器数量,提出一种基于单个温度传感器数据的主轴轴向热误差辨识模型。该模型的输入由单个温度传感器采集的数据处理生成,内部参数少,利用智能优化算法的全局寻优能力辨识模型参数,减少人工干预,使得模型泛化性更强。以某型号三轴机床为实验对象,通过机床切削工件,验证模型辨识效果。通过与神经网络主轴热误差预测模型对比分析及实验验证,结果表明:提出的热误差模型预测主轴轴向热误差的残差较小,预测精度较高,且具有内部参数少和泛化能力强等优点,可支持数控机床的集成应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号