首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
准确讯速地预测疲劳裂纹的扩展进程具有十分重要的现实意义和显著的经济效益.为了实现疲劳裂纹长度的准确预测,提出基于遗传算法优化支持向量机(GA-SVM)的疲劳裂纹扩展预测方法,其中遗传算法用于确定SVM中的训练参数,得到优化的SVM预测模型.试验结果表明:用GA-SVM对疲劳裂纹长度进行预测具有很好的预测精度.  相似文献   

2.
基于最小二乘支持向量机的磨损预测   总被引:1,自引:0,他引:1  
曹一波  谢小鹏 《润滑与密封》2007,32(2):138-141,186
针对机器设备磨损产生的因素多,而且磨损量的多少与产生的因素具有高度非线性,磨损难以预测的问题。同时考虑到监测得到的数据为小样本事件也是磨损难以预测的原因,在齿轮箱实验数据的基础上,利用最小二乘支持向量机,给出预测步骤,提出一种以载荷、温度、振动信号特征、速度和时间为输入量,机器设备的磨损量为输出量的预测方法。用齿轮箱的实验数据验证了所提出的方法的有效性。  相似文献   

3.
准确分析系统可靠性,对于评估产品性能和制定维修策略起着至关重要的作用.采用单步前向预测方式,提出了基于最小二乘支持向量机分析发动机系统可靠性的方法.通过对比最小二乘支持向量机和三种神经网络方法的预测效果,验证了算法的有效性,实验结果表明最小二乘支持向量机能够提供较好的预测精度.在可靠性寿命分析中,为了提高分析的准确性和效率,通过程序化的方法绘制了威布尔概率纸,自动获取相关参数,并对比分析了最小二乘支持向量机预测结果与实际数据对发动机系统可靠性指标的影响,结果显示最小二乘支持向量机能够提供较准确的结果,可以作为系统可靠性分析的一种新方法.  相似文献   

4.
针对目前机械故障诊断中,难以获得大量的故障数据样本以及诊断知识获取困难等不足,提出了专门针对有限样本的新一代机器学习的算法——最小二乘支持向量机(LS—SVM),它能够得到现有信息下,不仅是样本数趋于无穷大时的最优解,因此,在样本很少的情况下具有较好的泛化能力,比较适合解决故障诊断小样本情况的实际问题。本文介绍了LS-SVM的基本原理和分类方法,并利用其对振动传感器的常见故障进行诊断,结果表明了LS—SVM对设备故障具有良好的分类效果。  相似文献   

5.
基于最小二乘支持向量机滚动轴承故障诊断   总被引:2,自引:1,他引:2  
根据滚动轴承故障时振动信号特点,提出了一种基于小波包变换和最小二乘支持向量机(LS-SVM)相结合的滚动轴承故障诊断方法.通过对滚动轴承振动信号进行小波包分解,得到各分解节点对应频率段的重构信号以及各节点的能量,并将各节点能量组成的特征向量作为诊断模型的特征向量,输入到LS-SVM多类分类器中进行故障识别,然后在滚动轴承故障试验台上实测振动数据.分析结果表明,该方法具有较高的分类速度和较好的故障诊断正确率.  相似文献   

6.
基于多最小二乘支持向量机的草酸钴粒度软测量   总被引:3,自引:2,他引:3  
提出了一种基于改进的鲁棒学习方法(improved robust learning algorithm,IRLA)的多最小二乘支持向量机(multipleleast squares support vector machine,Multi-LSSVM)建模方法,用以解决非线性系统建模问题。该方法通过Bootstrap算法复制出训练集样本空间上的多个样本子空间,训练出多个成员最小二乘支持向量机模型,然后应用改进的鲁棒学习方法对成员最小二乘支持向量机模型的权重进行优化融合,从而使多最小二乘支持向量机模型具有较高的准确率和泛化能力。通过仿真实验,验证了方法的有效性;并将其应用于湿法冶金合成过程草酸钴粒度软测量建模问题,获得了比单个最小二乘支持向量机模型方法更高的预测精度。  相似文献   

7.
基于最小二乘支持向量机的发酵过程混合建模   总被引:7,自引:5,他引:7  
提出了一种综合先验知识与最小二乘支持向量机的发酵过程建模方法,并且采用遗传算法进行最小二乘支持向量机的参数优化选取。该模型应用到一个具体发酵过程状态变量的预估中,仿真结果表明基于最小二乘支持向量机的混合模型具有很高的精度与范化能力,同时也表明了最小二乘支持向量机是软测量建模的一种有效方法。  相似文献   

8.
由于储能系统是微电网中必不可少的一部分,锂离子电池因其寿命长、使用效率高和储能密度大等优点,成为微电网中较为理想的储能装置。在电池的使用过程中,由于要求对电池的容量有精确的判断,因此应检测电池的SOC。本文在分析了不同的SOC估算方法的基础上,针对微电网中储能使用的锂离子电池,提出了使用最小二乘支持向量机的方法估算其SOC,并进行了具体的试验验证。试验显示,预测数据与实际数据的最大误差约为6%,充分证明了该方法是可行和有效的。  相似文献   

9.
为了克服最小二乘支持向量回归机(LS-SVR)算法不能直接应用于多输入多输出(MIMO)系统建模的缺点,通过在目标函数中加入样本绝对误差项,提出了一种多输出最小二乘支持向量回归机(MLSSVR)新算法。将MLSSVR算法应用于板形模式识别研究,提出了一种基于MLSSVR的板形模式识别新方法,将该方法与LS-SVR合成识别方法进行对比实验,并对MLSSVR识别模型的识别能力进行了测试和分析,
结果证明了MLSSVR算法的有效性。MLSSVR板形模式识别方法不仅避免了LS-SVR合成方法的复杂组合运算,具有更高的识别速度,而且具有更高精度和很强的泛化能力。
  相似文献   

10.
传感器动态建模的最小二乘支持向量机方法   总被引:1,自引:1,他引:1  
提出了应用最小二乘支持向量机(LSISVMs)建立传感器动态模型的方法。LS-SVMs的训练过程遵循的是结构风险最小化原则,而不是通常神经网络的经验误差最小化原则,遵循该原则可获得更好的泛化性能,且不易发生局部最优及过拟合现象,因此可以克服应用人工神经网络建立传感器动态模型的缺陷。通过实例验证了该方法的实用性及可靠性。实验结果表明,即使传感器动态模型存在严重非线性,该方法也仍然有效。  相似文献   

11.
基于最小二乘支持向量机的铣削加工表面粗糙度预测模型   总被引:3,自引:0,他引:3  
在分析以往所建立的表面粗糙度预测模型方法不足的基础上,将一种基于最小二乘支持向量机的预测模型引入铣削加工领域,并给出了相应的步骤和算法。该模型能方便地预测铣削加工参数对加工表面粗糙度的影响,并能利用有限的试验数据得出整个工作范围内的表面粗糙度预测值,有助于准确认识已加工表面质量随铣削参数的变化规律。通过具体实例及与其他几种预测方法的对比表明,在相同样本条件下,其模型构造速度比标准支持向量机方法高1~2个数量级,模型预测误差约为支持向量机方法的40%,预测精度比常规BP模型高1个数量级。因此,基于最小二乘支持向量机方法建模速度快、预测精度高、适合加工表面粗糙度预测。  相似文献   

12.
由于支持向量机中的参数会显著影响着支持向量机分类的精确度,建立了一种基于免疫算法优化最小二乘支持向量机的电力变压器故障诊断模型;该模型以变压器油中主要溶解气体作为向量机的输入,以变压器故障类型作为其相应的输出,选用径向基核、使用免疫算法得到优化参数,充分发挥向量机较高泛化能力的优势.实例验证表明,这种方法能提高变压器的故障诊断准确率,反映了其有效性和正确性.  相似文献   

13.
在模糊稳健设计中,需要采用随机模拟方法计算模糊概率和非线性约束函数,但计算效率很低.为此,提出了一种基于支持向量机的模糊稳健设计方法.采用支持向量回归机对模糊概率进行仿真计算,采用支持向量回归机或分类机作为非线性约束函数的替代模型,显著降低了模糊稳健优化设计的机时消耗.给出了新方法的具体算法步骤,并通过模糊稳健优化设计...  相似文献   

14.
针对支持向量机核函数和控制参数选取难度较大的问题,提出了一种主动划分参数区间的双尺度径向基核支持向量机,并用并行定向变异混合粒子群优化算法选取其控制参数。试验分析了利用标准数据集经多次独立重复试验得到的均值等统计量,验证、测试了上述支持向量机模型,同时考虑了类间数据不平衡的影响。结果表明,双尺度径向基核函数的性能在多数情况下优于单径向基核函数,并行定向变异的混合粒子群优化算法优于标准粒子群优化算法,能够有效抑制早熟收敛,有利于搜索到更优的支持向量机控制参数。  相似文献   

15.
基于模拟退火与LSSVM的轴承故障诊断   总被引:1,自引:1,他引:1  
运用模拟退火与最小二乘支持向量机(least square support vector machine,简称LSSVM)轴承的故障诊断法,是在得到较优的λ和σ参数的同时进行特征选择获取显著特征子集.为验证所提方法的有效性,将4种运行状态、5种转速、2类载荷条件下测得的轴承振动信号作为研究样本,提取信号的52个特征.试验结果表明,该法对轴承故障分类的准确率较高,可有效用于旋转机械的状态监控.  相似文献   

16.
介绍了最小二乘支持向量机(LS-SVM)回归算法的基本原理,并以490BPG型柴油机润滑油中磨损磨粒为研究对象,使用LS-SVM对磨粒的浓度数据进行了回归拟合并预测,并与基于人工神经网络的预测模型的预测结果进行了比较.结果表明,LS-SVM的预测模型的精确度较高,泛化能力强,是用于润滑油中磨粒浓度预测的一种有效的方法.  相似文献   

17.
针对内燃机振动信号信噪比低且呈非线性、非平稳的特性,提出将经验模态分解(emprical mode decomposition,简称EMD)相空间重构理论与支持向量机(support vector machine,简称SVM)相结合,实现内燃机振动监测数据的建模及预测.首先,将含噪声的振动信号经验模式分解,去掉主要干扰因素所对应的固有模态函数(intrinsic mode function,简称IMF)分量,再将剩余IMF分量进行重构,得到去噪声后振动信号时间序列;然后应用混沌理论,选择合适的嵌入维数和时间延迟对去噪后的振动信号时间序列进行相空间重构;最后采用SVM对其进行建模预测,并与径向基函数(radial basis function,简称RBF)神经网络的预测结果进行比较.试验数据表明,该方法能够预测内燃机振动信号的变化趋势,性能优于传统的分析方法,具有一定的工程实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号