首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周进  黄卫星  肖泽仪  官益豪  何娟娟 《化工机械》2005,32(4):211-213,247
在前人研究的基础上,进一步地考虑了离心流化床在初始流化后气速增大引起的床层膨胀,通过引入气速与空隙率变化函数关系建立了离心力场气固流态化的动力学模型,得出了空隙率和床层膨胀关系式,从而得出床层压降的计算公式。理论预测的针对不同转速、不同颗粒的床层压降与临界速度的关系与实验数据吻合良好,能更准确地预测实验结果。  相似文献   

2.
田朋  王德武  王若瑾  唐猛  郝晓磊  张少峰 《化工学报》2021,72(10):5102-5113
采用二维床及D类玻璃珠颗粒,在表观气速Ug=0.267~0.978 m/s、摇摆幅值Θ=5°~15°、摇摆周期T=8~20 s的实验条件下,对摇摆流化床内气固流动过程及气体通过流化床的时均总压降进行了研究,并通过与常规直立床和倾斜床进行对比,分析了床体摇摆对气固流动的影响。结果表明,在平均角速度ωave>2(°)/s的条件下,当初始装料量和表观气速相同时,气体通过摇摆流化床的时均总压降低于直立床,高于相同最大倾角时的倾斜床;惯性力所产生的压降在0.15 kPa以下,其对床层压降的影响较小,床体倾斜导致气体向边壁区域聚集是影响摇摆流化床内气固流动特性的主要因素,由此导致床内存在固定床和下行移动床状态的非流化区域,使得处于流化区域的颗粒量减少,同时还降低了流化床层在竖直方向的静压。非流化区域的存在还会造成流化区域的气速高于直立床表观气速,两者表观气速之比为1.04~1.49。  相似文献   

3.
Bed pressure drop equations have been formulated for gas-solid fluidized beds with different types of promoters using Ergun's equation (Ergun, 1952 Ergun, S. 1952. Fluid flow through packed columns. Chem. Eng. Prog., 48(2): 89[Web of Science ®] [Google Scholar]) and experimental data. Four rod promoters, seven disk promoters, along with one blade promoter were used in beds supported on five different distributors with open areas of 12.9%, 8.96%, 5.74%, 3.23%, and 1.43% of the column section. The predicted values of bed pressure drop using a modified (i.e., modified numerical constant) Burke-Plummer (Burke and Plummer, 1928 Burke, F. E. and Plummer, W. B. 1928. Gas flow through packed columns. Ind. Eng. Chem., 20: 1196[Crossref] [Google Scholar]) equation were compared with the corresponding experimental as well as the respective values obtained with the help of Kumar et al. (submitted) and traditional gas-solid fluidized bed equations.  相似文献   

4.
A study on the flow of power-law fluids through a multi-particle system including both fixed bed and fluidized bed is presented. Equations for the pressure drop, the minimum fluidization velocity, and the bed expansion are obtained by extending the Blake-Kozeny's equation for the pressure drop through packed beds to power-law fluids. Bed expansion equations are also obtained by extending the Richard-son-Zaki's theory for the drag force in a multiparticle suspension to power-law fluids. These equations are compared with experimental data.  相似文献   

5.
微小流化床流化特性分析   总被引:4,自引:2,他引:2  
在内径4.3, 5.5, 10.5, 15.5, 20.5和25.5 mm的6个气固微小流化床中,考察了石英砂和不同粒径的催化裂化催化剂的流化特性. 研究了流化床尺寸、颗粒及流化介质物性对微小流化床床层压降及最小流化速度的影响. 结果表明,不同颗粒及流化介质的微小流化床床层压降实验值均小于计算值. 传统的压降关联式不能直接用于微小流化床. 其最小流化速度随床径减小呈指数增大,在高径比1:1~3:1范围内,最小流化速度随料高增大近似呈线性增大,其增大速度随床径增大而变缓. 基于实验数据得出了微小流化床最小流化速度的关联式.  相似文献   

6.
The hydrodynamic characteristics of small hydrophobic activated carbon particles were determined in air flowing through both fixed and fluidized bed layers and water flowing through an inverse fluidized bed. Based on experimental data the Ergun-equation was corrected. A new relationship is proposed to predict the pressure drop in a fixed bed with gas flowing by using the minimum fluidizing velocity (u mf ) and particle terminal velocity (u t ). Apparent density of oven-dried activated carbon increases with filling the internal pores by water. After the bed density reaches the density of water, the system switches from an inverse fluidized layer into the classical fluidized state. Finally, it has been demonstrated that the Reynolds number (Re mf ) at u mf associated with the original Archimedes number (Ar) for gas-solid fluidized system and the modified Ar numbers characterizing the inverse fluidized beds lie on identical curves.  相似文献   

7.
8.
在百年流态化的研究过程中,涉及到直径不同的流化床。但是,多以流化床的大型化为研究目标,对微型流化床及其本身特性的研究很少。作为专门处理固体颗粒的流态化单元过程,其装置的微型化将兼具微通道反应器和宏观流化床各自的优点,是流态化研究的重要方向。鉴于气固微型流化床已有全面的国内外进展综述,本文仅对液固和气液固微型流化床的国内外研究进展进行分析。结论性内容包括:液固微型流化床床径减小,壁面效应增强,最小流化液速实验值大于Ergun公式计算值;需对描述液固均匀膨胀流化规律的Richardson-Zaki方程加以修正。气液固微型流化床内存在4种典型流型:半流化、弹状流、分散鼓泡流和液体输送流;由于床径减小,出现半流化状态,依据压降表观液速关系曲线等无法确定最小流化液速;气液固微型流化床的反应性能得以有效提升;最后给出了进一步研究的方向,以期为后续研究提供参考。  相似文献   

9.
在内径3~20 mm的4个气-固微型流化床中,分别考察了A类和B类两种类型颗粒的流化特性,同时研究了床几何结构、操作条件、物相性质等各因素对其最小流化速度的影响.结果 表明,气-固微型流化床中的床层压降特性与颗粒类型密切相关,不同的流动状态下两种类型颗粒的流动特性存在显著地差异.在固定床阶段,与B类颗粒相比,A类颗粒与...  相似文献   

10.
Recently, tapered fluidized bed has become more attractive because of the problems associated with conventional (cylindrical) beds like fluidization of widely distributed particles, entrainment of particles and limitation of fluidization velocity. There have been some investigations on hydrodynamics of uniform single size particles but there have been no detailed studies of homogeneous binary mixture of particles of different sizes and different particles in tapered beds. In the present work, an attempt has been made to study the hydrodynamic characteristics of homogeneous binary mixture of irregular particles in tapered beds having different tapered angles. Correlations have been developed for important characteristics, especially critical fluidization velocities and maximum bed pressure drops of homogeneous binary mixture of irregular particles in gas-solid tapered fluidized beds. Experimental values of critical fluidization velocities and maximum bed pressure drops have been compared with the developed correlations.  相似文献   

11.
郝英立  施明恒 《化工学报》1997,48(2):152-159
通过简化求解离心流化床连续介质模型基本控制方程,获得了初始流化速度、压力、空隙率、空隙气速、床层膨胀和床层压降的计算方程式。理论预报的临界流化速度和床层压降与实验结果吻合得很好。揭示了离心流化床随流速增大由表面逐层初始流化;流化后各半径处流化程度不同。理论分析还表明气体压缩性的影响随着床体转速的增大而增大。  相似文献   

12.
料位高度是气、固流化床内重要的基本参数之一。虽然有压降法、测温法、电容法和回波法等可用于料位的测量,但是这些方法作为工业应用都不能令人满意。本文根据流化床内部特性提出了利用流化床内压力波动信号和料面附近的平均压力降测量流化床料位高度的新方法。实验表明,这种方法原理简单,测量精度高。不仅能测量流化床内料位的平均高度。而且还能得到料位的瞬时高度和波动范围;且测量结果不受流化床的几何尺寸、床内物料的特性及流化状态等因素的影响,从而为工业流化床提供了一种料位在线测量的新方法。  相似文献   

13.
With computational fluid dynamics (CFD) it is possible to get a detailed view of the flow behaviour of the fluidized beds. A profound and fundamental understanding of bed dynamics such as bed pressure drop, bed expansion ratio, bed fluctuation ratio, and minimum fluidization velocity of homogeneous binary mixtures has been made in a semi‐cylindrical fluidized column for gas–solid systems, resulting in a predictive model for fluidized beds. In the present work attempt has been made to study the effect of different system parameters (viz., size and density of the bed materials and initial static bed height) on the bed dynamics. The correlations for the bed expansion and bed fluctuations have been developed on the basis of dimensional analysis using these system parameters. Computational study has also been carried out using a commercial CFD package Fluent (Fluent, Inc.). A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied in order to simulate the gas–solid flow. CFD simulated bed pressure drop has been compared with the experimental bed pressure drops under different conditions for which the results show good agreements.  相似文献   

14.
The complex pressure fluctuation phenomenon in gas-solid fluidized beds is systematically examined in this paper based on a comprehensive review of the literature data. The local pressure fluctuations are composed of multiple sources, including local bubble induced fluctuations, global bed oscillations and propagating pressure waves originating in other locations (e.g. bed surface, distributor and windbox). The interaction and coupling among bubble motion, under-damped oscillations of fluidized particles and bed surface, propagating compressible pressure waves and flow pulsation in gas-solid fluidized beds creates the complexity of local pressure fluctuations, and is likely responsible for the formation of complex but unique flow patterns. A few attempts have been reported in the literature on examining the interaction between bed oscillations, plenum chamber air pulsation and propagating pressure waves in fluidized beds, showing some promises on predicting the local pressure fluctuations. Future work should be focused on predicting local and global pressure fluctuations and the formation of unique surface flow patterns by coupling different contributing mechanisms.  相似文献   

15.
The effects of sound assistance on fluidization behaviors were systematically investigated in a gas–solid acoustic fluidized bed. A model modified from Syamlal–O'Brien drag model was established. The original solid momentum equation was developed and an acoustic model was also proposed. The radial particle volume fraction, axial root‐mean‐square of bed pressure drop, granular temperature, and particle velocity in gas–solid acoustic fluidized bed were simulated using computational fluid dynamics (CFD) code Fluent 6.2. The results showed that radial particle volume fraction increased using modified drag model compared with that using the original one. Radial particle volume fraction was revealed as a parabolic concentration profile. Axial particle volume fraction decreased with the increasing bed height. The granular temperature increased with increasing sound pressure level. It showed that simulation values using CFD code Fluent 6.2 were in agreement with the experimental data. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
Flow behavior of gas and agglomerates is numerically investigated in fluidized beds using a transient two-fluid model. It is assumed that the particles move as agglomerates rather than single particles in the gas–cohesive particles fluidized beds. The present model is coupled a modified kinetic theory model proposed by Arastoopour (2001) with an agglomerate-based approach (ABA). The interaction between gas and agglomerates is considered. The agglomerates properties are estimated from the ABA. Predictions are compared with experimental data measured by Jiradilok (2005) in a bubbling fluidized bed and Li and Tong (2004) in a circulating fluidized bed. The distributions of velocity, concentration and diameter of agglomerates, and pressure drop are numerically obtained. The influences of the contact bonding energy on the distributions of velocity and concentration of agglomerates are analyzed.  相似文献   

17.
S. Vun  P. Witt 《Powder Technology》2010,204(1):11-5820
Fluidized bed technology has diverse industrial applications ranging from the gasification of coal in the power industry to chemical reactions for the plastic industry. Due to their complex chaotic non-linear behaviour understanding the hydrodynamic behaviour in fluidized beds is often limited to pressure drop measurements and a mass balance of the system. Computational fluid dynamics has the capability to model multiphase flows and can assist in understanding gas-solid fluidized beds by modeling their hydrodynamics. The multiphase Eulerian-Eulerian gas-solid model, extended and validated here improves on the kinetic theory of granular flow by including a closure term for the quasi-static stress associated with the long term particle contact at high solid concentrations. Similar quasi-static models have been widely applied to slow granular flow such as chute flow, flow down an incline plane and geophysical flow. However combining the kinetic theory of granular flow and the quasi-static stress model for the application of fluidized beds is limited. The objective of the present paper is to compare two quasi-static stress models to the experimental fluidized bed data of Bouillard et al. [4]. A quasi-static granular flow model (QSGF) initially developed by Gray and Stiles [18] is compared to the commonly used Srivastava and Sundaresan [37]. Both models show good agreement with the experimental bubble diameter and averaged porosity profiles. However only the QSGF model shows a distinct asymmetry in the bubble shape which was documented by Bouillard et al. [4].  相似文献   

18.
Flowbehavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow. The bed pressure drop and fountain height are measured in a conical spouted bed of 100mmI.D. at different gas velocities. The simulation results are compared with measurements of bed pressure drop and fountain height. The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls. It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data. The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.  相似文献   

19.
颗粒碰撞压力的大小和频率会严重影响气固流化床中内部构件及其支撑部件等的磨蚀情况和使用寿命,是设计流化床中内部构件及其支撑部件的关键因素之一。采用膜式压力应变传感器、多通道数据采集仪测定不同颗粒在操作流速0.262 1~0.524 2 m/s浓相区内不同轴向、径向位置处的颗粒碰撞压力信号,通过小波分析和相空间重构分析,揭示颗粒和气泡对颗粒碰撞压力的影响和气固流化床中内部构件的影响。  相似文献   

20.
Q. j. Guo  Y. Xu  X. Yue 《化学工程与技术》2009,32(12):1992-1999
The fluidization characteristics of quartz sand and fluid catalytic crack (FCC) catalyst particles in six micro‐fluidized beds with inner diameters of 4.3, 5.5, 10.5, 15.5, 20.5, and 25.5 mm were investigated. The effects of bed diameter (Dt), static bed height (Hs), particles and gas properties on the pressure drop and minimum fluidization velocity (umf) were examined. The results show that the theoretical pressure drops of micro‐fluidized beds deviated from the experimental values under different particles and gas properties. The possible reason is due to an increase in bed voidage under smaller bed diameters. The equations for conventional fluidized beds did not fit for micro‐fluidized beds. umf increased with decreasing Dt. When the ratio of Hs to Dt ranged from 1:1 to 3:1, umf was characterized by a linear equation with Hs, while the slope of the equation umf versus Hs decreased with increasing Dt. In this paper, Dt/dp and Hs/dp were defined as dimensionless variables and a new equation was developed to predict umf in micro‐fluidized beds under the present experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号