首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用Gleeble-3500热模拟试验机模拟了屈服强度500 MPa级高建钢热变形奥氏体的动态连续冷却转变过程,结合金相法绘制试验钢的CCT曲线,并对相变组织进行维氏硬度测试。试验结果表明,当冷速低于2.5℃/s时,形成多边形铁素体、针状铁素体和珠光体的混合组织;在5~30℃/s的冷速范围内,形成针状铁素体和粒状贝氏体的混合组织;在冷速50℃/s时,开始出现少量板条贝氏体组织。随着冷速的增大,组织细化,连续冷却转变组织硬度增加。试验钢两阶段变形后的控冷工艺窗口为5~25℃/s。  相似文献   

2.
为进一步优化非调质NM400复相耐磨钢不同组织配比,利用Gleeble-3800热模拟试验机探究了试验钢在连续冷却条件下的组织转变规律,并结合金相法和硬度法,绘制出试验钢的动态连续冷却转变(CCT)曲线。结果表明,当冷速低于1 ℃/s时,试验钢组织为铁素体+粒状贝氏体+珠光体,部分粗大的原奥氏体晶粒转变为粒状贝氏体和珠光体。在冷却速率为5~40 ℃/s时,试验钢不再发生珠光体转变,显微组织均为铁素体+贝氏体+马氏体。并随着冷速的增加,马氏体含量不断增加,硬度升高;此外,不同分段冷却方案下,较低的中冷温度以及较长的空冷时间均有利于铁素体和贝氏体的转变。同时,残留奥氏体含量则随铁素体含量的增大而增大;由于试验钢的Ms点较高,马氏体板条较宽,并且有自回火现象发生。  相似文献   

3.
采用膨胀法结合金相-硬度法,在Gleeble-3500热模拟机上测定了55Mn钢的连续冷却转变CCT曲线;研究了连续冷却过程中冷却速度对55Mn钢室温组织的影响。结果表明,当冷速为0.05~15℃/s时,转变产物主要为铁素体(F)和珠光体(P/S/T);当冷速达到15℃/s时,开始析出白色块状马氏体;当冷速为15~40℃/s时,只发生珠光体转变和马氏体转变,且随着冷速的增大,马氏体含量逐渐增多;当冷速大于40℃/s时,只发生马氏体转变,室温组织为马氏体+残余奥氏体。  相似文献   

4.
采用DIL805淬火膨胀仪、金相显微镜及显微硬度计,研究了ES355Al钢连续冷却过程的相变及组织转变规律,分析了冷却速率对ES355Al钢相变及组织演变的影响。结果表明:过冷奥氏体在冷却过程中发生铁素体转变、珠光体转变、贝氏体转变和马氏体转变。在冷速为0.2~1℃/s时,发生铁素体析出和珠光体转变;在冷速为2~7℃/s时,发生铁素体析出、珠光体转变和贝氏体转变,其中7℃/s为珠光体转变结束的临界冷速;,2℃/s、15℃/s分别为贝氏体、马氏体开始转变的临界冷速。ES355Al钢的显微硬度随着冷速增加而增加,由冷速0.2℃/s时的170 HV5增加到20℃/s时的350 HV5。  相似文献   

5.
Nb-V复合微合金化中碳非调质钢的连续冷却转变   总被引:1,自引:1,他引:0  
利用Formastor-Digital膨胀仪测定了Nb-V复合微合金化中碳非调质钢的连续冷却转变曲线(CCT曲线),并测定了不同冷速下实验钢硬度的变化。分析了不同Nb、V含量对中碳非调质钢连续冷却转变的影响。结果表明,随着Nb、V含量的增加,相变点温度随之降低,并使得转变过程中珠光体、贝氏体转变区域变宽,组织中相应的体积分数增加。冷速在0.08~1℃/s时,组织主要为铁素体和珠光体;当冷速大于2.5℃/s时,开始发生贝氏体转变,随着冷速的进一步增加,贝氏体含量越来越多,并在5℃/s时出现马氏体组织。Nb-V复合微合金化实验钢受冷速的影响较大,随冷速的增大实验钢的显微硬度也随之提高。冷速分别在10℃/s和30℃/s时,硬度突然增大。  相似文献   

6.
利用膨胀法结合金相-硬度法,在Formast-F全自动相变仪上测定了60mm厚Q690D钢连续冷却转变静态CCT曲线,研究了冷却速度对显微组织、硬度的影响。结果表明:当冷速小于1℃/s时,转变产物为铁素体、珠光体和贝氏体;当冷速为1~3℃/s,转变产物为铁素体、贝氏体;当冷速为5~40℃/s,转变产物为贝氏体、马氏体;当冷速大于40℃/s时,转变产物为完全马氏体;当冷速小于20℃/s时,显微硬度逐渐升高;当冷速在20~100℃/s时,显微硬度在390 HV左右。  相似文献   

7.
在实验室利用Gleeble-3500热模拟试验机对Nb-V微合金化H型钢进行了连续冷却转变与形变热模拟试验,研究了形变温度和冷却速度对试验钢组织和力学性能的影响。结果表明:连续冷却转变过程中,冷速为1 ℃/s时,组织中开始出现少量贝氏体;冷速大于7 ℃/s时,不发生珠光体转变;冷速为15 ℃/s时,不发生铁素体转变。形变热模拟条件下,冷速≤1 ℃/s时,形变未改变试验钢的组织类型,其组织均为铁素体+珠光体;冷速为5~10 ℃/s时,形变显著改变试验钢的组织形态;形变温度越低,其组织中铁素体含量越高,铁素体与贝氏体组织越细小;形变温度为800~850 ℃,冷速控制在3~5 ℃/s时,试验钢可获得强韧性较好的细小准多边形铁素体与贝氏体的复合组织。  相似文献   

8.
采用 Gleeble-3800热模拟试验机对EH460船板钢进行1050 ℃下变形30%和850 ℃下变形30%的双道次压缩试验。绘制了在不同冷速下连续冷却过程中钢的膨胀曲线,并在光学显微镜下观察了不同冷速下试样的室温组织。结合膨胀法与金相法,利用 Origin 8.0软件绘制了船板钢的动态 CCT 曲线。结果表明,当冷速为0.1~3 ℃/s 时,所得室温组织主要是铁素体和珠光体;当冷速大于5 ℃/s 时,出现粒状贝氏体组织,随着冷速的增加贝氏体逐渐增多,铁素体与珠光体逐渐减少;当冷速为10~15 ℃/s 时,珠光体消失,组织为铁素体与粒状贝氏体;随着冷速进一步增到 20~50 ℃/s 时不再发生铁素体相变,仅为粒状贝氏体组织。  相似文献   

9.
用Gleeble-1500热模拟试验机研究了RE微合金化免退火冷镦钢SWRCH35KM热变形后连续冷却过程相变规律和显微组织演变特征。结果表明,试验钢0.1~25 ℃/s冷速范围内均发生了铁素体和珠光体转变,冷速0.1~0.2 ℃/s时细小珠光体区有明显球化行为,而冷速在>2 ℃/s后开始出现针状铁素体和魏氏组织。为了获得均匀细小的铁素体基体加在线球化珠光体组织,需在斯太尔摩冷却线采用分段冷却控制思路,吐丝温度至750 ℃范围内冷速宜>2 ℃/s,抑制粗大先共析铁素体,而在750~680 ℃时冷速需1~2 ℃/s,以避免魏氏组织和针状铁素体;680~640 ℃珠光体转变温度区间冷速应≤0.1 ℃/s,以促进珠光体在线球化。  相似文献   

10.
利用DIL805A膨胀仪测定了ER70S-G钢的过冷奥氏体连续冷却转变(CCT)曲线,并结合金相-硬度法确定过冷奥氏体在不同冷却速率下的组织转变。结果表明,ER70S-G钢连续冷却过程中,冷速在0.1~0.6 ℃/s范围内时,组织为铁素体+珠光体;冷速为0.8 ℃/s时,组织为铁素体+珠光体+贝氏体;冷速在1~20.0 ℃/s范围内时,组织为铁素体+贝氏体。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

17.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

18.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

19.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号