首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stabilization of heavy metals in ceramsite made with sewage sludge   总被引:3,自引:0,他引:3  
In order to investigate stabilization of heavy metals in ceramsite made with sewage sludge as an additive, the configuration of heavy metals in ceramsite was analysed by XRD and while leaching tests were conducted to find out the effect of sintering temperature (850 degrees C, 900 degrees C, 950 degrees C, 1000 degrees C, 1100 degrees C, and 1200 degrees C), pH (1, 3, 5, 7, 9, and 12), and H2O2 concentration (0.5molL(-1), 1molL(-1), 1.5molL(-1), 3molL(-1), and 5molL(-1)) on stabilization of heavy metals (Cd, Cr, Cu, and Pb) in ceramsite. The results indicate that leaching contents of heavy metals do not change above 1000 degrees C and sintering temperature has a significant effect on stabilization of heavy metals in ceramsite; leaching contents of heavy metals decrease as pH increases and increase as H2O2 concentration increases. XRD analysis reveals that the heavy metals exist in steady forms, mainly Pb2O(CrO(4)), CdSiO3, and CuO at 1100 degrees C. It is therefore concluded that heavy metals are properly stabilized in ceramsite and cannot be easily released into the environment again to cause secondary pollution.  相似文献   

2.
This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750mgkg(-1) dry weight (d.w.), respectively. The concentrations increased by 12-60% for Cd, 8-17% for Cu, 15-43% for Pb and 14-44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe-Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability.  相似文献   

3.
The presence of heavy metals in municipal sludge restricts its use for agricultural purposes. In this paper, the bioavailability and eco-toxicity of heavy metals in municipal sludge was evaluated, taking into consideration both the speciation of metals and the local environmental characteristics. The dewatered municipal sludge samples were collected from five sewage plants in Changsha, Zhuzhou and Xiangtan respectively, which are representative cities with characteristics of the middle-south region of China. Some agricultural significant parameters and total metal concentrations in the sludge were determined and the metal speciation was studied by using BCR sequential extraction procedure. It was found experimentally that in general the municipal sludge collected from the five sewage plants was rich in organics, N and P. Except that the sludge from Xia Wan Sewage Treatment Plant showed higher concentrations of heavy metals, the sludge from other plants all showed a low total content of heavy metals with only Cd slightly exceeding the permitted values of the national application standard of acid soil in China (GB18918-2002). The sequential extraction results showed that Cu and Zn were principally distributed in the oxidizable fraction, which meant a high potential toxicity, but the bioavailability of Zn might be overestimated to the soil of Hunan. Pb was mainly in the residual fraction. The distribution of Cd showed no obvious characteristics.  相似文献   

4.
Sludge samples were collected from different treatment steps of Gaobeidian wastewater treatment plant (WWTP) of Beijing City, PR China, to investigate the distributions of total and chemical fractions of Fe, Mn, Ni, Cu, Zn, Cr, Pb, and Mo in different sludges. The highest total concentrations were found for Fe, Mn, Pb, and Mo in digested sludge (DS), Ni and Cr in thickened sludge (TS), Zn in dewatering sludge (DWS), and Cu in active sludge (AS). The lowest concentrations were observed in AS, except for Cu in TS. Significant differences of total metal concentration were observed between AS and TS (or DS), suggesting that sludge thickening and digesting treatments significantly influenced the total metal concentrations. Fe, Cu, Ni, Cr, Mo, and Pb distributed principally in the residual fraction in all sludges, while Zn and Mn presented in a highly available fraction. For same metal in different sludges, the portion of easily mobile fraction decreased significantly along the wastewater treatment process, and metals in AS presented in the highest available fraction. Organic matter contents, TN, and TP of sludges exhibited a significant positive correlation with the concentrations of exchangeable and reducible fraction of Pb, Mo, Cr, Cu, and Fe, while sludge pH demonstrated significant negative correlations with the concentrations of these metals.  相似文献   

5.
Studies on land application of sewage sludge and its limiting factors   总被引:3,自引:0,他引:3  
Field experiments were conducted to study the effect of sewage sludge application on the heavy metal content in soils and grasses. The sewage sludge was obtained from Northern Shenyang Wastewater Treatment Plant, China, and applied at 0, 15, 30, 60, 120 and 150 t ha−1. Native grasses Zoysia japonica and Poa annua were chosen as experimental plants. The experimental results showed that nutrient content of the soil, especially organic matter, was increased after sewage sludge application. The grass biomass was increased and the grass growing season was longer. Heavy metal concentrations in the soil also increased; however, the Zn content did not exceed the stringent Chinese environmental quality standard for soil. Pb and Cu did not exceed the standard for B grade soil, but Cd concentration in soil amended by sewage sludge has exceeded the B grade standard. Therefore, it is suggested that the sewage sludge produced from the wastewater treatment plant should not be applied to farmland, for which B grade soil or better is required. The sludge is suitable for application to forestry and grasslands or nurseries where food chain contamination with cadmium is not a concern.  相似文献   

6.
Electrodialytic remediation, an electrochemically assisted extraction method, has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work, electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. The pH-dependent desorption characteristics for Cr differed between the two MSWI ashes but were similar for Cd, Pb, Zn and Cu. Thus, it was expected that the speciation of Cd, Pb, Zn and Cu was similar in the two ashes. However, in succeeding electrodialytic remediation experiments significant differences in removal efficiencies were observed, especially for Pb and Zn. In analogous electrodialytic remediation experiments, 8% Pb and 73% Zn was removed from one of the MSWI ashes, but only 2.5% Pb and 24% Zn from the other. These differences are probably due to variations in pH and heavy metal speciation between the different ashes. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. Approximately 70% Cd was removed from both types of ashes during 3 weeks of electrodialytic remediation, although the total concentration was a factor of 10 lower in the wood ash. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases are dominating in the MSWI ashes.  相似文献   

7.
Incineration of sewage sludge doped with several heavy metals was studied at small pilot plant scale in a bubbling fluidized bed of 15 cm i.d. and 5.2 m height. Some ceramic and metallic filters were tested at a relatively high temperature (600–700°C) to check their usefulness for partitioning of heavy metals in the flue gas. The work was focused on the fate of six selected heavy metals (Cr, Cd, Ni, Zn, Cu, Pb). In this process, there were four exit flows or discharges for these metals: bottom ash, coarse fly ash, cake filter or fine fly ash and flue exit gas. The distribution or partitioning of each heavy metal (HM) among these four exit flows was studied. Only cadmium and sometimes lead showed any difference between the different HMs considered. All other HMs seems to have the same fate, distribution or partitioning. Such distribution is governed or ruled by the fluid dynamics in the incinerator, cyclone and ceramic filter. Most of the HMs do not have enough residence time in this incinerator type to diffuse out of the ash particle and so remain in the particle. The amount of each HM in each exit flow in this process is governed by fluid dynamics and kinetics and not at all by thermodynamics.  相似文献   

8.
Treatment of sewage sludge using electrokinetic geosynthetics   总被引:2,自引:0,他引:2  
The treatment and disposal of sewage sludge is one of the most problematical issues affecting wastewater treatment in the developed world. The traditional outlets for sewage sludge are to spread it on agricultural land, or to form a cake for deposit to landfill or incineration. In order to create a sludge cake, water must be removed. Existing dewatering technology based on pressure can only remove a very limited amount of this water because of the way in which water is bound to the sludge particles or flocs. Several researchers have shown that electrokinetic dewatering of sludge is more efficient than conventional hydraulically driven methods. This involves the application of a dc voltage across the sludge, driving water under an electrical gradient from positive (anode) electrode to negative (cathode) electrode. However, there have been several reasons why this technique has not been adopted in practice, not least because the, normally metallic, anode rapidly dissolves due to the acidic environment created by the electrolysis of water. This paper will describe experimentation using electrokinetic geosynthetics (EKG): polymer-based materials containing conducting elements. These have been used to minimise the problem of electrode corrosion and create a sludge treatment system that can produce dry solids contents in excess of 30%. It will suggest different options for the treatment of sludges both in situ in sludge lagoons and windrows, and ex situ as a treatment process.  相似文献   

9.
Efforts have been made in this study to stabilize the sewage sludge mixed with sugarcane trash in four different proportions: 20% (T(1)); 40% (T(2)); 60% (T(3)) and 80% (T(4)), under laboratory conditions using epigeic earthworm (Oligochaeta) Eisenia fetida. The composting potential of worm was also evaluated in 100% sewage sludge treatment (T(5)). The changes in chemical properties of substrate was measured at the end. The vermicomposted material showed decrease in organic C (4.8-12.7%) and exchangeable K (3.2-15.3%) content, whereas increase in total N (5.9-25.1%) and available P (1.2-10.9%), exchangeable Ca (2.3-10.9%) and exchangeable Mg (4.5-14.0%) contents. Vermicomposting process caused considerable reduction in concentration of diethylene-triaminepentaacetic acid (DTPA) extractable metals: Cu (4.98-30.5%), Fe (5.08-12.64%), Mn (3.31-18.0%), Zn (2.52-15.90%) and Pb (2.38-20.0%). E. fetida showed the better growth performances in first three treatments (T(1)-T(3)) possibly due to higher content of organic matter (supplied by bulking agent, i.e. sugarcane trash). The earthworm mortality was higher in vermibeds those contained more sludge proportions. Study revealed that vermicomposting might be an efficient technology to convert negligible municipal sewage sludge into value-added products. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile might be useful to convert noxious sludge into useful products, at low-input basis.  相似文献   

10.
During combustion of wastewater treatment sludge, the inorganic constituents are converted into ash which contains the major fraction of the heavy metals present. The behaviour of heavy metals in combustion processes has been studied extensively for mostly coal combustion and waste incineration. For biomass and sludge, literature data are scarce and mostly limited to laboratory experiments. The present paper assesses the partitioning of eight heavy metals (Hg, As, Cd, Cu, Pb, Cr, Ni and Zn) in the different residues from a large-scale fluidized bed sludge combustor of 4.4 m i.d. The origin of the sludge is mostly from treating urban wastewaters (>90%), although some mixed sludge (urban+industrial, <10%) is also burnt. The different residues (bottom ash, fly ash, filter cake, scrubber effluent and stack emissions) were sampled and analysed during 33 weeks, spread over a period of 1 year. The mass balance of relevant heavy metals closes for 96.5%, inaccuracies being related to the unsteadiness of the process, the accuracy of the mass flow data monitored at the plant, and on collecting representative samples. It is also shown that all heavy metals under scrutiny, except Hg, are concentrated in the fly ash as collected in the electrostatic precipitator.  相似文献   

11.
A respirometry technique can be applied as an effective method to determine the net maximum specific growth rate of autotrophic biomass under both normal conditions and when inhibition occurs. The net maximum specific growth rate of uninhibited autotrophic biomass, expressed as (mu(A)-b(A)), is approximately 0.8 per day [Proceeding of the International Congress on CHISA, Prague, 2002, p. 1]. Several heavy metals and organic compounds have inhibitory effects. Copper (Cu(2+)) has stronger inhibitory effects than zinc (Zn(2+)), and inhibits the nitrification process by 50% at 0.08 mg/l [(mu(A)-b(A)) = 0.4 per day], while the same concentration of Zn(2+) establishes 12% inhibition only [(mu(A)-b(A)) = 0.75 per day]. Inhibition with Cu(2+) starts at concentrations above 0.05 mg/l, while this is above 0.3mg/l for Zn(2+). The inhibition of the nitrification process is complete at 1.2mg/l for both Cu(2+) and Zn(2+). Among the selected organic compounds tested n the experiments, the degree of inhibition decreases as follow: chlorobenzene>trichloroethylene (TCE)>phenol>ethylbenzene. Chlorobenzene already inhibits the autotrophic biomass at 0.25 mg/l. The nitrification process is totally inhibited by adding 0.75 mg/l of chlorobenzene. TCE has a less inhibitory effect on the nitrification process and 50% inhibition is noticed at 0.75 mg/l TCE. The nitrification process is totally inhibited at 1mg/l TCE. Phenol inhibits the nitrification for 50% at 3 mg/l. The inhibitory effect of phenol is almost constant in the range 4-10 mg/l and complete inhibition is reached at 50 mg/l. The inhibitory effect of ethylbenzene is 50% at 8 mg/l and the autotrophic biomass is totally inhibited at 50 mg/l. Experimental findings are compared with literature data, which generally and significantly overestimate the inhibition threshold concentrations.  相似文献   

12.
Microwave enhanced stabilization of heavy metal sludge   总被引:1,自引:0,他引:1  
A microwave process can be utilized to stabilize the copper ions in heavy metal sludge. The effects of microwave processing on stabilization of heavy metal sludge were studied as a function of additive, power, process time, reaction atmosphere, cooling gas, organic substance, and temperature. Copper leach resistance increased with addition of aluminum metal powder, with increased microwave power, increased processing time, and using a gaseous environment of nitrogen for processing and air for cooling [N2/air]. The organic in the sludge affected stabilization, whether or not the organic smoldered. During heating in conventional ovens, exothermic oxidation of the organic resulted in sludge temperatures of about 500 degrees C for oven control temperatures of 200-500 degrees C. After microwave heating dried the sludge, the sludge temperature rose to 500 degrees C. The reaction between copper ions and metal aluminum in the dried sludge should be regarded as a solid phase reaction. Adding aluminum metal powder and reaction temperature were the key parameters in stabilizing copper in the heavy metal sludge, whether heated by microwave radiation or conventional oven. The mass balance indicates insignificant volatization of the copper during heating.  相似文献   

13.
To evaluate the influences of sewage sludge-derived organic matters on metal sorption and on the resultant sludge loading estimates, a batch experiment was conducted to compare the sorption of Ni, Cu and Pb in sewage sludge filtrates (1:20 sewage sludge to water) on eight soils and the adsorption of metals in a reference solution which had the same matrix as the sewage sludge filtrate except dissolved organic material (henceforth referred to as reference solution). Metal sorption could be well fitted by linear isotherm and the dissolved organic matter in sludge significantly depressed the sorption (p<0.01). The main factor controlling sorption of Ni on different soils was dominated by soil cation exchange capacity (CEC) and sorption of Cu and Pb was by soil organic matter (SOM). The parameters obtained from the sorption isotherm equations were then used to estimate sludge loadings into the soils. When the sorption parameters derived from the reference solution were used for calculation, that is the effect of dissolved organic matter was not considered, the calculated safe application rates are approximately 47.8, 51.4, 34.2, 31.3, 21.7, 46.3, 187.1 and 27.6 t-sludge/ha for the Beijing, Jiangxi, Xiamen, Jilin, Guangdong, Wuhan, Gansu and Xinjiang soils, respectively. However, when the sorption parameters derived from the dissolved organo-metallic complexes are used for calculation, the corresponding application rates are reduced to approximately 6.0, 3.4, 1.9, 10.0, 6.3, 3.6, 7.3 and 3.5 t-sludge/ha, respectively. By this study we can get a conclusion that the effect of sewage sludge derived dissolved organic matter on heavy metal sorption and soil properties should be considered in the course of regulating the safe application rates of sewage sludge to soil.  相似文献   

14.
In this study, a hydrometallurgical treatment involving the solvent extraction and recovery of some heavy metals from a sulphuric acid leach solution of galvanic sludge, using di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and bis-(2,4,4-trimethylpentyl)-phosphinic acid (Cyanex 272), both diluted in kerosene, has been investigated.

The preliminary tests revealed the necessity to remove other metal species than zinc and nickel, contained in the leach solution, and therefore, processes to cement copper and precipitate chromium were then applied to finally obtain a Zn and Ni pregnant solution prior to solvent extraction. For the experimental conditions studied, Cyanex 272 showed a good recovery of Zn after the stripping stage using H2SO4, but D2EHPA effectively promoted a higher Zn extraction than Cyanex 272 did. The dependence of the solvent extraction method on variables such as pH, contact time and concentration of extractant, as well as the effect of different concentrations of sulphuric acid on stripping, are discussed.

The discussion also includes the previous conditions developed to separate the main interfering metallic species from the leach solution in order to improve the extraction and recovery of zinc by solvent extraction. The final objective has been to achieve a solution as pure as possible to recover nickel sulphate.  相似文献   


15.
In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.  相似文献   

16.
In this work, medical waste (MW) incinerator fly ashes from different types of incinerators were subjected to supercritical water (SCW) and SCW + H2O2 (SCWH) treatments. Sequential extraction experiments showed that, after SCW treatment, heavy metals in exchangeable and carbonate forms in the ashes could be transferred into other relatively stable forms, e.g., Ba and Cr into residual fraction, Cu and Pb into organic matter fraction. SCWH treatment could stabilize heavy metals in Fe–Mn oxides and residual fractions. However, the behavior of As was quite different from heavy metals, which could be leached out from residue fraction after SCW and SWCH treatments. The leached As tended to absorb onto Fe–Mn oxides and organic matters under near neutral environment, but it could react with Ca2+ at lower pH, increasing the mobility of this element. Therefore, it is necessary to neutralize acidic ash to near neutral condition before subjecting it to SCW and SCWH treatments so as to effectively stabilize hazardous elements in the ash. Consequently, it is believed that SCWH treatment is an effective alternative for hazardous elements detoxification in MW fly ash.  相似文献   

17.
The purpose of this study is to utilize an electroplating sludge for belite-rich clinker production and to observe the influence of heavy metals on the polymorphs of dicalcium silicate (C2S). Belite-rich clinkers prepared with 0.5–2% of NiO, ZnO, CuO, and Cr2O3 were used to investigate the individual effects of the heavy metals in question. The Reference Intensity Ratio (RIR) method was employed to determine the weight fractions of γ-C2S and β-C2S in the clinkers, and their microstructures were examined by the transmission electron microscopy (TEM). The results showed that nickel, zinc, and chromium have positive effects on β-C2S stabilization (Cr3+ > Ni2+ > Zn2+), whereas copper has a negative effect. The addition of up to 10% electroplating sludge did not have any negative influence on the formation of C2S. It was observed that γ-C2S decreased while β-C2S increased with a rise in the addition of the electroplating sludge. Moreover, nickel and chromium mainly contributed to stabilizing β-C2S in the belite-rich clinkers produced from the electroplating sludge.  相似文献   

18.
The co-combustion of sewage sludge (SS) and coal is widely used for the treatment and thermal valorization of SS produced in wastewater treatment plants. The chemical and ecotoxicological properties of the ashes produced in this thermal treatment have not been fully studied. Two combustion tests were performed in a fluidized bed combustor. Colombian coal was used as fuel in test A. A blend (1 + 1) of this coal and a stabilized SS (Biogran®) was used in a second test B. Samples of the bottom and fly ashes trapped in two sequential cyclones were collected. The characterization of the ashes was focused on two main aspects: (1) the bulk content of a set of metals and (2) the characterization of eluates produced according to the European Standard leaching test EN 12457-2. The eluates were submitted to an ecotoxicological characterization for two bio-indicators. In what concerns the bulk content of ashes, both combustion tests have produced ashes with different compositions. The ashes formed during the co-combustion test have shown higher concentrations of metals, namely Cr, Cu, Ni, Pb, Zn and Fe for all ashes. The leaching test has shown low mobility of these elements from the by-products produced during the combustion and co-combustion tests. Cr and Cr(VI) were mainly detected in the eluates of the 1st cyclone ashes produced in both combustion tests and in the 2nd cyclone ashes produced in the co-combustion test.Considering the ecotoxicity assays, the eluates of bottom and fly ashes for both combustion and co-combustion tests have shown low ecotoxic levels. The micro-crustacean Daphnia magna was generally more sensitive than the bacterium Vibrio fischeri. CEMWE criterion has allowed to classify the bottom ashes for both combustion and co-combustion tests as non-toxic residues and the fly ashes collected in both cyclones as toxic.  相似文献   

19.
A laboratory experiment was conducted to study the effect of metal spiking and incubation on some properties and sequentially extractable chemical pools of some heavy metals (F1, two extractions with 0.1 M Sr(NO3)2; F2, one extraction with 1 M NaOAc (pH 5.0); F3, three extractions with 5% NaOCl (pH 8.5) at 90-95 degrees C; F4, three extractions with 0.2 M oxalic acid + 0.2 M ammonium oxalate + 0.1 M ascorbic acid (pH 3.0); and F5, dissolution of sample residue in HF-HClO4 (residual fraction,) and also 1 M CaCl2 and 0.005 M DTPA extractable heavy metals in sewage sludge. Metal spiking and incubation decreased pH and easily oxidizable organic C content of sludge but increased electrical conductivity. Metal spiking and incubation increased F1 fraction of all heavy metals, F2 fraction of Ni, Pb, Cu, and Cd, F3 fraction of Pb, Cu, and Cd, F4 or reducible fraction of Ni, Cu, and Cd and residual fraction of Zn and Pb, but decreased F2 fraction of Zn, F3 of Zn and Ni, F4 fraction of Zn and F5 fraction of Ni, Cu, and Cd. Metal spiking and incubation increased 1 M CaCl2 and 0.005 M DTPA extractable amounts of all heavy metals in sludge except for 0.005 M DTPA extractable Zn, which registered only very marginal decrease.  相似文献   

20.
The materials with adsorbent properties were produced from urban sewage sludge by two different procedures via microwave irradiation: (1) by one single pyrolysis stage (SC); (2) by chemical activation with ZnCl2 (SZ). The BET, SEM and FT-IR have been used to evaluate the pore structural parameters and surface chemistry of the adsorbents, respectively. Subsequently they were used for adsorption of Cu(II) from aqueous solutions. The effects of various experimental parameters, such as pH, temperature were investigated in a batch-adsorption technique. The results showed that the adsorption of Cu(II) was maximal at pH 5.0. The kinetic study demonstrated that the adsorption process was followed the second-order kinetic equation. The experimental adsorption isotherm data were well fitted with Langmuir model and the maximum adsorption capacity of Cu(II) were found to be 3.88 and 10.56 mg/g for SC and SZ, respectively, in the solution of pH 5.0. Thermodynamic parameters such as changes in the enthalpy (ΔH0), entropy (ΔS0) and free energy (ΔG0) indicate that Cu(II) adsorption onto SC and SZ is an endothermic and spontaneous process in nature at 15-45 °C. These results indicate that the sewage sludge-derived material via microwave induced ZnCl2 activation is an effective and alternative adsorbent for the removal of Cu(II) from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号