首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
介绍非线性理论中一个活跃分支——分形,针对短期电力负荷变化的非线性和复杂性,运用分形理论提取电力负荷变化的内在变化规律。在G—P算法的基础上用最小二乘法从时间序列中计算出关联维,运用分形和非线性动力学相关理论建立预测模型,并进行实际预测,取得了较好的预测结果。  相似文献   

2.
应用混沌理论的电力系统短期负荷预测   总被引:22,自引:3,他引:22  
梁志珊  王丽敏 《控制与决策》1998,13(1):87-90,94
应用混沌方法对电力系统历史负荷时间序列进行数理统计处理,并将这种混沌特性应用于知期负荷预测。不直接考虑气候等随机因素,只要根据过去负荷时间序列及计算所得的Lyapunov指数规律,就可得到较高的预测精度。对东北电网实际负荷时间序列进行预测,取得满意的结果。  相似文献   

3.
电力负荷预测是一项重要和具有挑战性的工作.从寻求准确预测电力系统负荷的目的出发,提出了基于优化决策树的短期负荷预测新方法,有效地考虑了非负荷因素对短期负荷预测的影响.文中先将样本数据进行预处理,利用粗糙集理论对决策树的测试属性进行优化约简,然后建立了短期负荷预测的决策树模型.良好的实例分析效果说明,该方法可提高短期负荷预测的精度,具有实用性和优越性.  相似文献   

4.
针对海量用电数据环境下,如何提高电力负荷预测精度的问题,采用数据挖掘对电力负荷历史数据进行聚类分析以及异常检测,并利用灰色序列对异常数据进行修正。利用蚁群算法对粒子群优化-反向传播(PSO-BP)算法进行优化,以提高算法的预测精度。通过对历史负荷数据进行试验,验证该方法的预测平均误差为3.16%,低于无数据挖掘的PSO-BP算法模型以及PSO-BP算法模型的预测误差。该方法具有一定的实用性以及有效性。  相似文献   

5.
电力负荷的预测影响着电力储蓄和输送的工作质量,所以提高电力负荷预测的精准度对提高电力部门的效率具有重要意义.随着时代的发展,电力系统的机构变得越来越复杂,电力负荷的形式也越来越多样化,像非线性变化、事变、和不确定变化越来越突出,为了适应这一变化,诞生了人工神经网络,与传统的预测方法相比较,人工神经网络预测的精准度更高、...  相似文献   

6.
电力负荷预测是电力系统一项重要的工作。本文应用了BP神经网络对南方某地区短期电力负荷进行了预测。首先介绍了BP神经网络结构,其次是利用BP神经网络结合南方某地区电力负荷数据进行实证研究,并且在设计BP神经网络结构时考虑了气象因素对负荷的影响。  相似文献   

7.
为降低负荷序列的复杂性,利用EMD分解方法得到不同的分量.为降低训练时间和减小分量逐个预测所带来的累计误差,利用分量过零率大小将分量重构为高频分量和低频分量,利用TCN模型预测负荷的高频分量,利用极限学习机ELM预测负荷低频分量.通过实验将所提模型EMD-TCN-ELM分别与3个单模型TCN、ELM、LSTM和3个混合模型EMD-TCN、EMD-ELM、EMD-LSTM比较,其MAPE分别降低0.538%, 1.866%, 1.191%,0.026%, 1.559%, 0.323%,所提模型的预测精度最高.且所提模型在预测精度前3的模型中训练时间最短,验证了所提模型在负荷预测精度和训练时间方面的优越性.  相似文献   

8.
本文分析了天气和节假日对电力负荷的影响 ,建立了神经网络和模糊逻辑相结合的综合预测模型进行短期负荷预测。预测结果经两步得出 ,首先训练神经网络 ,令其预测基本日负荷曲线 ,然后利用模糊逻辑根据天气因素以及是否节假日等情况对负荷曲线进行修正 ,使其在天气突变等情况下也能达到较高的预测精度。采用此模型对石家庄电力系统负荷进行预测分析 ,取得了令人满意的结果。  相似文献   

9.
电力产业是国民工业系统中重要的产业。在电网运行管理中,对于负荷预测具有非常重要的作用。更加准确的电力负荷预测可以为电网的安全稳定运行、实时进行电网负荷的调度提供了重要依据。特别是在经济方面,精确的电力负荷预测可以优化发、用电电网调度计划,合理调度和分配资源,从而起到使社会效益、经济效益最大化的作用。然而随着中国经济的飞速发展,对电力的需求不断增长,电力负荷本身受诸多因素以及政策影响比如日期、天气、气候、市场等其他因素,这些因素更大大加大了准确进行电力负荷预测的困难性。一直以来,人们一直都致力于提高电力负荷预测的准确性,人工神经网络算法具有泛化、学习能力强等优点,现在该算法已在电力负荷预测领域中得到了广泛应用,并且取得了良好的效果。近年来,人工神经网络领域取得重大突破,涌现出一个新的深度学习研究领域。本文就是基于最新发展的人工神经网络算法,结合实际地区电网数据研究了短期电力负荷预测的相关问题。  相似文献   

10.
电力短期负荷预测模型与软件开发   总被引:10,自引:5,他引:5  
本文应用模糊理论,人工神经网络等智能技术,确定了有效的电力负荷短期预测算法,其中着重考虑了天气因素对电网负荷的影响,并开发了实用化的负荷在线预测软件,该软件是基于Windows的应用程序的,具有开放式的结构和友好的人机接口。可用于每小时或每15分钟的负荷预测,测试结果表明,该方法具有良好的预测精度。  相似文献   

11.
短期负荷预测对于电力系统安全经济运行有着重要的作用,支持向量机现已成功地应用在电力预测领域。提出一种基于实时气象因素的样本选择策略,首先利用日气象特征向量缩小样本集,然后基于实时气象因素利用FP-Growth算法选择与预测日相似的训练样本,最后建立支持向量机预测模型。最后通过实验表明,经过样本选择所建立起来的预测模型具有较高的预测精度。  相似文献   

12.
短期电力负荷预测是电力系统运行调度中一项重要的内容,传统的电力负荷预测方法都是建立在线性假设基础之上,由于预测精度低,难以满足现在电力部门的要求。人工神经网络己被应用在电力负荷预测中,并取得了较为理想的结果。主要基于神经网络的负荷预测模型,通过MATLAB仿真实验平台,构建RBF神经网络模型,并用历史电力负荷数据进行训练,成功的进行了电力系统的短期负荷预测,预测结果误差较小,取得了令人满意的结果。  相似文献   

13.
电力系统短期负荷预测对电力系统运行设计具有十分重要的意义。因此,在分析了电力负荷运行曲线的基础上,提出了一种基于级联模糊神经网络的预测模型。该模型采用基于神经网路理论的模糊模型参数辨识方法,很适合于复杂系统的模糊预测和控制。详细地对输入量的选择和学习算法进行了分析。实例表明,此方法具有町靠、鲁棒性好和快速等特点,优于神经网络电力负荷预报方法。  相似文献   

14.
目前有很多方法可以实现电力负荷预测,但各种方法都有各自的局限性,如何充分利用各种算法,使负荷预测的精确度提高,组合预测方法便应运而生了。然而当前的组合预测方法过于重视算法,而忽略样本。文中给出了一种基于提升方法的电力负荷预测挖掘算法,该方法通过样本权值进行抽样,训练生成模型,并根据模型效率改变样本权值,再次抽样训练生成模型,如此迭代生成多个模型后进行负荷预测。实际应用结果表明该方法比其它方法具有较高的精度。  相似文献   

15.
电力系统负荷预测是当前国内外的研究热点,支持向量回归算法是一种解决电力系统负荷预测问题非常有效的方法,如何根据特定数据集选择合适的模型参数,以保证建立好的模型有很好的推广性能,成为设计支持向量回归机的关键一步。本文采用了1-范数、2-范数以及v-支持向量回归算法来解决支持向量机参数的自动复制问题。在真实数据集上的实验结果表明,新模型在预测能力上较之一些广泛使用的软件可靠性预测模型有明显的提高。  相似文献   

16.
本文提出了一种基于进化神经网络的短期电网负荷预测算法。该算法使用了改进的人工蜂群算法与BP神经网络融合生成的进化神经网络,并且使用改进的人工蜂群算法对进化神经网络的偏置和权重进行优化。该算法将火电历史负荷数据作为输入,使用进化神经网络训练预测模型,预测未来一段时间内的电网负荷。首先获取历史负荷数据,然后将收集到的数据应用于进化神经网络模型训练。人工蜂群算法作为一种全局搜索算法,可以有效地探索模型参数空间,寻找最佳的模型参数组合以提升预测精度。为了验证所提出的负荷预测方法的有效性,本文使用了火电网负荷数据进行测试。实验结果表明,在短期电网负荷预测方面,本文提出的进化神经网络比传统方法预测结果更加准确可靠。  相似文献   

17.
通过对电力负荷变化规律和影响因素的分析,集结多种单个模型所包含的信息,进行最佳组合,提出了在单一模型预测结果基础之上的基于神经网络的优化组合预测,确定了网络训练样本和隐含层的个数,可使提前一天的预测精度较传统预测模型有较大提高。并当发现某一点预测误差过大,可对该点利用文中提出的误差灰色模型修正预测结果,这样不仅可提高整体预测精度,更重要的是减小最大预测误差值和减少大预测误差发生的次数。仿真结果验证了该预测模型的可行性和有效性。  相似文献   

18.
为凸显负荷波动的随机性、周期性和相关趋势,通过探求负荷变化机理显著提升预测精度,本文提出了一种基于EMD的负荷波动机理研究方法。首先对负荷进行EMD分解,得到随机、周期和趋势分量;然后分析各分量的变化规律与候选影响因素的关联关系,推导负荷变化机理,提取时标特征值;最后,进行特征的去冗余。该方法创新点是能提取出特征值的时标特性。以广东省负荷数据集作为预测案例研究,对比实验研究结果表明本文所提出方法的有效性。  相似文献   

19.
针对传统的短期电力负荷预测模型存在的预测精度不高和滞后性的问题,本文提出一种基于卷积神经网络、长短时记忆网络和注意力机制下的混合神经网络模型来进行预测。利用卷积层对多维的电力数据影响特征进行提取,过滤筛选其非重要影响因子,完成电力数据相关特征的映射变换,再通过长短时记忆网络层的循环,对时序性电力数据特征选择性提取,最后利用注意力机制添加重要特征的权重,经Adam算法优化后输出电力负荷预测的结果。依靠GPU强大的算力支撑来解决预测数据时的实时性问题,凭借多融合神经网络的手段来提高其预测精度。经由算例验证,所提出模型真实可靠,预测质量显著优于其他传统模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号