首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
介绍非线性理论中一个活跃分支——分形,针对短期电力负荷变化的非线性和复杂性,运用分形理论提取电力负荷变化的内在变化规律。在G—P算法的基础上用最小二乘法从时间序列中计算出关联维,运用分形和非线性动力学相关理论建立预测模型,并进行实际预测,取得了较好的预测结果。  相似文献   

2.
应用混沌理论的电力系统短期负荷预测   总被引:22,自引:3,他引:22  
梁志珊  王丽敏 《控制与决策》1998,13(1):87-90,94
应用混沌方法对电力系统历史负荷时间序列进行数理统计处理,并将这种混沌特性应用于知期负荷预测。不直接考虑气候等随机因素,只要根据过去负荷时间序列及计算所得的Lyapunov指数规律,就可得到较高的预测精度。对东北电网实际负荷时间序列进行预测,取得满意的结果。  相似文献   

3.
电力负荷预测是一项重要和具有挑战性的工作.从寻求准确预测电力系统负荷的目的出发,提出了基于优化决策树的短期负荷预测新方法,有效地考虑了非负荷因素对短期负荷预测的影响.文中先将样本数据进行预处理,利用粗糙集理论对决策树的测试属性进行优化约简,然后建立了短期负荷预测的决策树模型.良好的实例分析效果说明,该方法可提高短期负荷预测的精度,具有实用性和优越性.  相似文献   

4.
针对海量用电数据环境下,如何提高电力负荷预测精度的问题,采用数据挖掘对电力负荷历史数据进行聚类分析以及异常检测,并利用灰色序列对异常数据进行修正。利用蚁群算法对粒子群优化-反向传播(PSO-BP)算法进行优化,以提高算法的预测精度。通过对历史负荷数据进行试验,验证该方法的预测平均误差为3.16%,低于无数据挖掘的PSO-BP算法模型以及PSO-BP算法模型的预测误差。该方法具有一定的实用性以及有效性。  相似文献   

5.
电力负荷预测是电力系统一项重要的工作。本文应用了BP神经网络对南方某地区短期电力负荷进行了预测。首先介绍了BP神经网络结构,其次是利用BP神经网络结合南方某地区电力负荷数据进行实证研究,并且在设计BP神经网络结构时考虑了气象因素对负荷的影响。  相似文献   

6.
电力负荷的预测影响着电力储蓄和输送的工作质量,所以提高电力负荷预测的精准度对提高电力部门的效率具有重要意义.随着时代的发展,电力系统的机构变得越来越复杂,电力负荷的形式也越来越多样化,像非线性变化、事变、和不确定变化越来越突出,为了适应这一变化,诞生了人工神经网络,与传统的预测方法相比较,人工神经网络预测的精准度更高、...  相似文献   

7.
为降低负荷序列的复杂性,利用EMD分解方法得到不同的分量.为降低训练时间和减小分量逐个预测所带来的累计误差,利用分量过零率大小将分量重构为高频分量和低频分量,利用TCN模型预测负荷的高频分量,利用极限学习机ELM预测负荷低频分量.通过实验将所提模型EMD-TCN-ELM分别与3个单模型TCN、ELM、LSTM和3个混合模型EMD-TCN、EMD-ELM、EMD-LSTM比较,其MAPE分别降低0.538%, 1.866%, 1.191%,0.026%, 1.559%, 0.323%,所提模型的预测精度最高.且所提模型在预测精度前3的模型中训练时间最短,验证了所提模型在负荷预测精度和训练时间方面的优越性.  相似文献   

8.
本文分析了天气和节假日对电力负荷的影响 ,建立了神经网络和模糊逻辑相结合的综合预测模型进行短期负荷预测。预测结果经两步得出 ,首先训练神经网络 ,令其预测基本日负荷曲线 ,然后利用模糊逻辑根据天气因素以及是否节假日等情况对负荷曲线进行修正 ,使其在天气突变等情况下也能达到较高的预测精度。采用此模型对石家庄电力系统负荷进行预测分析 ,取得了令人满意的结果。  相似文献   

9.
电力产业是国民工业系统中重要的产业。在电网运行管理中,对于负荷预测具有非常重要的作用。更加准确的电力负荷预测可以为电网的安全稳定运行、实时进行电网负荷的调度提供了重要依据。特别是在经济方面,精确的电力负荷预测可以优化发、用电电网调度计划,合理调度和分配资源,从而起到使社会效益、经济效益最大化的作用。然而随着中国经济的飞速发展,对电力的需求不断增长,电力负荷本身受诸多因素以及政策影响比如日期、天气、气候、市场等其他因素,这些因素更大大加大了准确进行电力负荷预测的困难性。一直以来,人们一直都致力于提高电力负荷预测的准确性,人工神经网络算法具有泛化、学习能力强等优点,现在该算法已在电力负荷预测领域中得到了广泛应用,并且取得了良好的效果。近年来,人工神经网络领域取得重大突破,涌现出一个新的深度学习研究领域。本文就是基于最新发展的人工神经网络算法,结合实际地区电网数据研究了短期电力负荷预测的相关问题。  相似文献   

10.
电力负荷是受周期性变化以及天气等因素影响的高度非线性系统,而神经网络仅仅对已学习过的模式具有较好的范化能力。为提高神经网络的负荷预测精度,提出先对原始负荷序列进行差分运算以除去其周期性影响,然后依据相似性原理建立RBF神经网络预测模型,仿真实验表明采用该方法短期负荷预测精度有所改善。  相似文献   

11.
短期负荷预测对于电力系统安全经济运行有着重要的作用,支持向量机现已成功地应用在电力预测领域。提出一种基于实时气象因素的样本选择策略,首先利用日气象特征向量缩小样本集,然后基于实时气象因素利用FP-Growth算法选择与预测日相似的训练样本,最后建立支持向量机预测模型。最后通过实验表明,经过样本选择所建立起来的预测模型具有较高的预测精度。  相似文献   

12.
短期电力负荷预测是电力系统运行调度中一项重要的内容,传统的电力负荷预测方法都是建立在线性假设基础之上,由于预测精度低,难以满足现在电力部门的要求。人工神经网络己被应用在电力负荷预测中,并取得了较为理想的结果。主要基于神经网络的负荷预测模型,通过MATLAB仿真实验平台,构建RBF神经网络模型,并用历史电力负荷数据进行训练,成功的进行了电力系统的短期负荷预测,预测结果误差较小,取得了令人满意的结果。  相似文献   

13.
目前有很多方法可以实现电力负荷预测,但各种方法都有各自的局限性,如何充分利用各种算法,使负荷预测的精确度提高,组合预测方法便应运而生了。然而当前的组合预测方法过于重视算法,而忽略样本。文中给出了一种基于提升方法的电力负荷预测挖掘算法,该方法通过样本权值进行抽样,训练生成模型,并根据模型效率改变样本权值,再次抽样训练生成模型,如此迭代生成多个模型后进行负荷预测。实际应用结果表明该方法比其它方法具有较高的精度。  相似文献   

14.
电力系统负荷预测是当前国内外的研究热点,支持向量回归算法是一种解决电力系统负荷预测问题非常有效的方法,如何根据特定数据集选择合适的模型参数,以保证建立好的模型有很好的推广性能,成为设计支持向量回归机的关键一步。本文采用了1-范数、2-范数以及v-支持向量回归算法来解决支持向量机参数的自动复制问题。在真实数据集上的实验结果表明,新模型在预测能力上较之一些广泛使用的软件可靠性预测模型有明显的提高。  相似文献   

15.
通过对电力负荷变化规律和影响因素的分析,集结多种单个模型所包含的信息,进行最佳组合,提出了在单一模型预测结果基础之上的基于神经网络的优化组合预测,确定了网络训练样本和隐含层的个数,可使提前一天的预测精度较传统预测模型有较大提高。并当发现某一点预测误差过大,可对该点利用文中提出的误差灰色模型修正预测结果,这样不仅可提高整体预测精度,更重要的是减小最大预测误差值和减少大预测误差发生的次数。仿真结果验证了该预测模型的可行性和有效性。  相似文献   

16.
针对电力负荷的小样本、非线性、高维数和局部极小点等问题,提出采用最小二乘支持向量机方法建模,以历史负荷、温度、湿度等数据作为输入量,对短期电力负荷进行预测;针对最小二乘支持向量机在建模中存在的参数选取问题,采用一种根据种群多样性信息来指导初始种群选取和避免粒子早熟收敛现象的改进粒子群优化算法来优化最小二乘支持向量机的惩罚因子和核参数。仿真结果表明,基于改进粒子群优化算法和最小二乘支持向量机的短期电力负荷预测方法较最小二乘支持向量机预测方法、基于基本粒子群优化算法和最小二乘向量机的预测方法具有更好的预测精确度。  相似文献   

17.
一种电力系统短期负荷预测的新方法   总被引:5,自引:0,他引:5  
本文把一种新的灰色理论自修正模型应用到负荷预测的误差校正中。提出了纵向负荷预测与横向误差校正相结合的方法。首先选用同一时刻并且具有相同影响因素的负荷作为人工神经网络的输入进行纵向负荷预测,利用预测时刻之前的整点时刻负荷预测的误差来建立一个带有自修正功能的灰色理论模型进行负荷预测的横向误差校正。这种方法提高了预测的精度。  相似文献   

18.
章曙光 《微机发展》2006,16(5):234-236
随着电力系统的发展,负荷预测受到广泛重视。但由于它受到大量不确定因素的影响,导致电力负荷预测是一项重要而又非常复杂的工作,预测过程需要考虑多种因素。介绍了CBR的基本原理与方法,在分析相关技术的基础上,建立了一个基于CBR的电力负荷预测系统。实验分析结果表明该方法具有有效性和实用性,也说明了CBR在电力负荷预测系统的应用是提高电力系统生产规划、运行调度与管理水平,实现安全、高效和经济调度的重要技术手段。  相似文献   

19.
提出了确定性退火聚类和最小二乘支持向量机(Least square Support Vectormachine.LSSVM)相结合的电力系统短期负荷预测方法.考虑影响负荷变化的各种因素构造负荷样本数据,利用确定性退火聚类算法对样本数据进行分类,得到的分类样本数据作为最小二乘支持向量机的学习样本,保证最小二乘支持向量机具有较高的预测精度.利用某电力公司2007年负荷数据和气象数据进行仿真实验,仿真结果表明该方法具有较高的预测精度.  相似文献   

20.
中长期电力负荷预测研究   总被引:2,自引:0,他引:2  
为了有效地提高电力负荷的预测精度,针对影响中长期电力负荷多因素间的非线性和不确定性,提出了一种粗糙集(RS)和最小二乘支持向量机(LSSVM)相结合的中长期电力负荷预测方法.采用粗糙集理论把影响电力负荷的六个因素,属性约简为三个核心属性,减少了LSSVM的输入量,提高了电力负荷预测系统的快速性;粗糙最小二乘支持向量机回归建模,构造RS-LSSVM的电力负荷预测模型,提高预测的精度.最后进行仿真,改进模型应用于某地区的中长期电力负荷的拟合和预测中,采用RS-LSSVM模型,与BP神经网络的拟合预测结果相比,预测误差明显小于BP神经网络,具有更高的预测精度,为中长期的电力系统负荷预测提供了一种新的科学、有效的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号