共查询到20条相似文献,搜索用时 75 毫秒
1.
分布式车间作业计划与调度是一个典型的组合优化问题,而组合优化问题是遗传算法求解的领域。该文描述了分布式车间作业调度问题及其调度方法,结合分布式车间生产模式的实际情况,将模拟退火算法引入自适应遗传算法,提出了混合遗传算法(GASA);详细地阐述了分布式车间作业计划与调度问题的解决策略和操作过程,并以甘特图的方式给出了计算结果。与其他方法比较,混合遗传算法是解决分布式车间作业计划与调度问题的更为优良的方法。 相似文献
2.
柔性作业车间调度问题具有解集多样化与解空间复杂的特点,传统多目标优化算法求解时容易陷入局部最优且丢失解的多样性。在建立以最大完工时间、最大能耗、机器总负荷为优化目标的柔性作业车间调度模型的情况下,提出一种改进的非支配排序遗传算法(Improved Non-dominated Sorting Genetic Algorithm II, INSGA-II)求解该模型。INSGA-II算法先将随机式初始化与启发式初始化方法混合,提高种群多样性;然后对工序部分与机器部分采用针对性的交叉、变异策略,提高算法全局搜索能力;最后设计自适应的交叉、变异算子以兼顾算法的全局收敛与局部寻优能力。在mk01~mk07标准数据集上的实验结果显示INSGA-II算法有着更优的算法收敛性与解集多样性。 相似文献
4.
针对离散制造业的许多产品采用柔性工艺设计增加作业计划调度的复杂性这一问题,对传统的FJSP进行了工序顺序柔性的扩展,将问题抽象为柔性工艺的作业车间调度问题(flexible process Job-Shop scheduling problem,FPJSP)。以缩短生产周期为目标,建立了该问题的整数规划模型,并设计了混合遗传算法。该算法针对FPJSP的特点设计了改进的遗传算法染色体编码方式和遗传算子,并结合变邻域搜索算法,设计了适合求解该问题的四种不同的邻域结构进行动态邻域搜索,以提高遗传算法的邻域搜索性能。通过应用实例验证了所提出的混合遗传算法在求解FPJSP的求解效率和优化性能方面的有效性。 相似文献
5.
针对柔性作业车间调度问题的特点,提出一种求解该问题的改进变邻域搜索算法。结合问题特点设计合理的编码方式,采用遗传算法进行最优解搜索,将搜索的结果作为变邻域搜索算法的初始解,以提高初始解的质量。为提高局部搜索能力,设计3种不同的邻域结构,构建邻域结构集以产生邻域解,保证邻域解的搜索过程中解的可行性以提高求解效率。针对一系列典型的柔性作业车间调度问题的实例,运用所设计的改进变邻域搜索算法进行测试求解,并将计算结果与文献中其他算法的测试结果进行比较,验证了所提出方法求解柔性作业车间调度问题的可行性和有效性。 相似文献
6.
在多目标柔性车间作业调度问题的研究中,求解算法与多目标处理至关重要。因此,基于非支配排序遗传算法提出了改进遗传算法求解该问题,设计了相应的矩阵编码、交叉算子,改进了非劣前沿分级方法,并提出了基于Pareto等级的自适应变异算子以及精英保留策略。实例计算表明,该算法可以利用传统遗传算法全局搜索能力的同时可以防止早熟现象的发生。改进非劣前沿分级方法可以快速得到Pareto最优解集,进一步减小了计算复杂度,而且可以根据种群的多样性改变变异概率,有利于保持种群多样性、发掘潜力个体。 相似文献
7.
针对柔性分批有可能导致不规则的分批方案,提出了基于批量规则的有序分批方法,并按照最大批量规则,分析了影响确定最佳额定批量的主要因素,设计了一种基于工件工序时间分布的差异批量的分批方案。通过实例仿真,结果表明该方案的调度周期等主要指标均优于相同批量的分批方案,对实际生产调度具有指导作用。 相似文献
8.
9.
柔性作业车间调度问题是典型的NP难问题,对实际生产应用具有指导作用。近年来,随着遗传算法的发展,利用遗传算法来解决柔性作业车间调度问题的思想和方法层出不穷。为了促进遗传算法求解柔性作业车间调度问题的进一步发展,阐述了柔性作业车间调度问题的研究理论,对已有改进方法进行了分类,通过对现存问题的分析,探讨了未来的发展方向。 相似文献
10.
在实际生产过程中,生产调度和设备维护相互影响,因此两者应该统筹优化.为研究具有预防性维护的分布式柔性作业车间调度问题,以最小化最大完工时间为目标,提出一种双种群混合遗传算法.结合问题特性,设计三维编码以及对应的机器解码方案,采用不同的策略初始化种群以均衡一部分工厂负载,为双种群设计不同的交叉变异算子提高算法的多样性,并利用交换精英解的方法实现两个种群的协作优化,同时针对关键工厂和预防性维护操作设计相应的局部搜索.最后对比现有算法,在同构和异构工厂的算例上进行实验,使用正交试验法优化算法参数设置.实验结果验证了局部搜索以及种群协作的有效性和双种群混合遗传算法求解具有预防性维护的分布式柔性作业车间调度问题的优越性. 相似文献
11.
分析生产车间的实际生产状况,建立了考虑工件移动时间的柔性作业车间调度问题模型,该模型考虑了以往柔性作业车间调度问题模型所没有考虑的工件在加工机器间的移动时间,使柔性作业车间调度问题更贴近实际生产,让调度理论更具现实性。通过对已有的改进遗传算法的遗传操作进行重构,设计出有效求解考虑工件移动时间的柔性作业车间调度问题的改进遗传算法。最后对实际案例进行求解,得到调度甘特图和析取图,通过对甘特图和析取图的分析验证了所建考虑工件移动时间的柔性作业车间调度问题模型的可行性和有效性。 相似文献
12.
为了优化以零件族为单位进行生产的可重构单元内单个零件族的加工时间和协调各零件族同时完工以实现整体调度所用时间最短,提出一种分级调度算法.该算法将调度过程分为三层,即时间决策层、分配决策层和路径决策层.以时间决策层为最终优化目标,通过将时间分解至分配决策层再至路径决策层,下层时间达到最优后反馈至上层,层层优化以实现整体调度时间最优.最后通过实例验证该算法在分配各零件族的机器数量和零件的加工路径中的合理性和有效性. 相似文献
13.
为了优化同时考虑最大完工时间和机器能耗的双目标分布式柔性作业车间调度问题,提出了一种改进的多目标松鼠搜索算法。引入了基于升序排列规则的转换机制,实现了松鼠位置向量与调度解之间的转换,并针对机器空闲时间设计了从半主动到主动的解码策略。针对不同优化目标设计了三种种群初始化策略。同时提出了动态捕食者策略来更好地协调算法的全局探索和局部开发能力。设计了四种领域搜索策略用于增加种群多样。20个实例上的实验结果验证了改进后的算法求得解的质量和多样性更好,从而证明了其可有效求解分布式节能柔性调度问题。 相似文献
14.
15.
多目标柔性车间调度问题与实际更加符合,是典型的多目标组合优化问题,运用传统算法求解会产生大量的解空间,找到最优解是非常棘手的问题.基于此,提出了二阶优化方法,即基于遗传算法的初级单目标优化和基于多目标决策体系的高级精选优化的组合优化算法.初级优化阶段,采用改进的遗传算法,选用企业最关心的单目标选出一组Pareto解集;... 相似文献
16.
本文针对一类新型两阶段分布式装配柔性作业车间调度问题(DAFJSP),建立问题模型,以最小化最大完工时间为优化目标并提出一种超启发式交叉熵算法(HHCEA)进行求解.首先,设计基于工序序列、工厂分配和产品序列的三维向量编码规则和结合贪婪策略的解码规则,同时提出4种启发式方法以提高初始解的质量.然后,设计高低分层结构的HHCEA,高层为提高对搜索方向的引导性,采用交叉熵算法(CEA)学习和积累优质排列的信息,其中各排列由结合问题特点设计的11种启发式操作(即11种有效的邻域操作)构成;低层为增加在解空间中的搜索深度,将高层确定的每个排列中的启发式操作依次重复执行指定次数并在执行过程中加入基于模拟退火的扰动机制,以此作为一种新的启发式方法执行搜索.最后,通过仿真实验与算法对比验证HHCEA可有效求解DAFJSP. 相似文献
17.
18.
19.
柔性作业车间调度问题是经典作业车间调度问题的扩展,它允许工序在可选加工机器集中任意一台上加工,加工时间随加工机器不同而不同。针对柔性作业车间调度问题的特点,提出一种基于约束理论的局部搜索方法,对关键路径上的机器的负荷率进行比较,寻找瓶颈机器,以保证各机器之间的负荷平衡。为了克服传统遗传算法早熟和收敛慢的缺点,设计多种变异操作,增加种群多样性。为了更好保留每代中的优良解,设计了基于海明距离的精英解保留策略。运用提出的算法求解基准测试问题,验证了算法的可行性和有效性。 相似文献
20.
随着分布式数据环境越来越复杂,ETL工具要面临数据源多、分布地域广和海量数据等因素带来的挑战。原有的集中式ETL工作流优化理论不能满足现在复杂数据环境的要求。介绍了如何将基于置换的离散型粒子群算法应用到分布式ETL任务优化调度问题上,主要工作围绕ETL工作调度模型、算法编码设计、目标函数选择等内容来展开,给出了分布式ETL工作调度策略的实现过程和伪代码。理论分析和实验证明了实际应用的有效可行性。 相似文献