首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new continuous conduction mode (CCM) low-ripple high-efficiency charge-pump boost converter is presented. Its components include a double voltage charge pump and a low pass LC filter. The voltage boost ratio of the positive low-ripple output voltage of the proposed converter is (1 + D) where D is the duty cycle of the control switching signal waveform. Since the energy storage inductor is connected to the power source and the load at all times, the proposed converter always operates in CCM, the transient responses are fast, and the current stress on the output capacitor is reduced and the output voltage ripple is small. In this paper, the operation principles of the CCM low-ripple high-efficiency charge-pump boost converter are described in detail. Its circuitry is designed and implemented with a TSMC 0.35 μm CMOS processes whose operation frequency is 1 MHz. The circuitry is simple and the power conversion efficiency is up to 90.95 %, and the transient response is only 7 μs.  相似文献   

2.
A single-stage power-factor-corrected AC/DC converter (SSPFC) usually causes high voltage stress on the intermediate storage capacitor, due to the lack of control of this voltage. The storage capacitor voltage varies largely with line voltage, and load current and is usually higher than the peak line voltage. This paper presents a new single-switch SSPFC based on a flyback topology for which the storage capacitor voltage is loosely regulated by the output voltage. Without using extra power switches to increase the control dimension, the proposed converter uses a flyback converter with dual-output transformer to achieve the control purpose. The range of storage capacitor voltage change against the change of input voltage and load current is significantly reduced. Moreover, the maximum storage capacitor voltage can stay below the peak line voltage at high line condition. Experimental results verifying the operation of the proposed SSPFC are also reported.  相似文献   

3.
In this paper, a basic closed-form duty cycle control law is first derived for the proposed AC/DC converter to achieve clean sinusoidal input current, adjustable DC voltage, controllable power factor and bidirectional power flow capability, and fixed switching frequency, without using any current sensor. Then, a second dead-band scheme is derived from the previous basic form to achieve the same function and to reduce switching loss and thermal stress. Similarly, a four-switch scheme is also derived to provide a new operation mode to enhance the reliability of the converter. Modified control laws of the above family are also considered to handle the effect of unbalanced input voltage. It is very interesting to see that a unified theory can be used to give the above family of duty cycle control laws under both balanced and unbalanced input voltage. Some simulation and experimental results are presented for verification  相似文献   

4.
This article presents a new dc/dc converter to perform the main functions of zero voltage switching (ZWS), low converter size, high switching frequency and low-voltage stress. Metal–oxide–semiconductor field-effect transistors (MOSFETs) with high switching frequency are used to reduce the converter size and increase circuit efficiency. To overcome low-voltage stress and high turn-on resistance of MOSFETs, the series half-bridge topology is adopted in the proposed converter. Hence, the low-voltage stress MOSFETs can be used for medium-input voltage applications. The asymmetric pulse-width modulation is used to generate the gating signals and achieve the ZWS. On the secondary side, the parallel connection of two diode rectifiers is adopted to reduce the current rating of passive components. On the primary side, the series connection of two transformers is used to balance two output inductor currents. Two flying capacitors are used to automatically balance the input split capacitor voltages. Finally, experiments with 1000 W rated power are performed to verify the theoretical analysis and the effectiveness of proposed converter.  相似文献   

5.
A digital power factor correction (PFC) control strategy optimized for DSP   总被引:5,自引:0,他引:5  
A predictive algorithm for digital control power factor correction (PFC) is presented in this paper. Based on this algorithm, all of the duty cycles required to achieve unity power factor in one half line period are calculated in advance by digital signal processors (DSP). A boost converter controlled by these precalculated duty cycles can achieve sinusoidal current waveform. One main advantage is that the digital control PFC implementation based on this control strategy can operate at a high switching frequency which is not directly dependent on the processing speed of DSP. Input voltage feed-forward compensation makes the output voltage insensitive to the input voltage variation and guarantees sinusoidal input current even if the input voltage is distorted. A prototype of boost PFC controlled by a DSP evaluation board was set up to implement the proposed predictive control strategy. Both the simulation and experimental results show that the proposed predictive strategy for PFC achieves near unity power factor.  相似文献   

6.
A single-stage single-switch AC–DC integrated converter is proposed in this paper, as a tight DC voltage regulator with unity input power factor for the fundamental component of the input current. Proposed converter is formed by the integration of buck-boost configuration with a buck converter operated by a single switch. The buck-boost section of the proposed configuration is operated in current discontinuous conduction mode (DCM) to get unity input power factor at the supply terminals and the buck section is operated up to boundary current conduction mode (BCM). The features acquired by the converter operating in complete discontinuous conduction mode (DCM) are unity input power factor, zero-current turn-ON for the Switch, fast and good DC output voltage regulation with extensive conversion range and low voltage stress on the switch. Additionally, the intermediate capacitor voltage stress is independent of converter load variations and so the switch also is subjected to constant peak voltage stress. A comprehensive study is carried out to obtain the necessary design equations. A design model is implemented using simulation and hardware. The results confirm the performance of the proposed configuration.  相似文献   

7.
Dynamic voltage and frequency scaling (DVFS) is an efficient method to reduce the power consumption in system on-chip. To support DVFS, multiple supply voltages are generated based on different work load frequencies and currents using on-chip DC–DC voltage converter. In this paper a frequency tunable multiple output voltage switched capacitor based dc–dc converter is presented. An analog to digital converter and phase controller is used in the feedback to change the switching frequency and duty cycle of the converter. An input voltage of 1.8 V is converted to 0.6 and 0.8 V for low and high signal frequency respectively. The proposed 2-phase switched capacitor architecture with gain setting of 1:2 is designed with the 90 nm technology. An output ripple of 45 mV is observed and the maximum transient response time of the converter is 17.3 ns (= 58 MHz).  相似文献   

8.
This paper proposes a novel three-phase ac-dc buck-boost converter. The proposed converter uses four active switches, which are driven by only one control signal. This converter is operated in discontinuous conduction mode (DCM) by using the pulsewidth modulation (PWM) technique, and the control scheme very easily and simply achieves purely sinusoidal input current, high power factor, low total harmonic distortion of the input current and step-up/down output voltage. Also, the proposed converter provides a constant average current to the output capacitor and load in each switching period. Thus, the ripple component of sixth times line frequency will not appear in the output voltage. Therefore, a smaller output capacitor can be used in the proposed converter. Moreover, the steady-state analysis of voltage gain and boundary operating condition are presented. Also, the selections of inductor, output capacitor and input filter are depicted. Finally, a prototype circuit with simple control logic is implemented to illustrate the theoretical analysis.  相似文献   

9.
This paper presents a single-phase soft-switched high power factor (PF) Sheppard-Taylor rectifier suitable for applications requiring low-voltage and high-current output. The proposed rectifier is designed to operate at discontinuous capacitor voltage mode. The Sheppard-Taylor converter in this mode of operation provides zero-voltage turnoff switching, as well as natural input PF correction over a wide range of input voltage, which makes the converter suitable for universal input applications. Due to its simplified control circuitry and reduced switch current stress, this converter presents better efficiency and higher reliability. In addition, the presented converter features continuous input-output currents, which result in low electromagnetic interference emission. Principle of operation, theoretical analysis, and experimental results from a laboratory prototype rated at 45 W/10 Vdc output voltage are presented. The measured efficiency and total harmonic distortion of the input line current were 85% and 3.2%, respectively. The input current harmonics meet the EN61000-3-2 Class D requirements.  相似文献   

10.
A novel technique for efficiently extracting the maximum output power from a solar panel under varying meteorological conditions is presented. The methodology is based on connecting a pulse-width-modulated (PWM) DC/DC SEPIC or Cuk converter between a solar panel and a load or battery bus. The converter operates in discontinuous capacitor voltage mode whilst its input current is continuous. By modulating a small-signal sinusoidal perturbation into the duty cycle of the main switch and comparing the maximum variation in the input voltage and the voltage stress of the main switch, the maximum power point (MPP) of the panel can be located. The nominal duty cycle of the main switch in the converter is adjusted to a value, so that the input resistance of the converter is equal to the equivalent output resistance of the solar panel at the MPP. This approach ensures maximum power transfer under all conditions without using microprocessors for calculation. Detailed mathematical derivations of the MPP tracking technique are included. The tracking capability of the proposed technique has been verified experimentally with a 10-W solar panel at different insolation (incident solar radiation) levels and under large-signal insolation level changes.  相似文献   

11.
An analysis and design of single-stage, single-switch bi-flyback ac/dc converter is presented. The main flyback stage controls the output power from the link capacitor voltage with Discontinuous Conduction Mode (DCM) or Continuous Conduction Mode (CCM) operation, while an auxiliary flyback stage supplies the power to the output directly from ac line input with DCM operation.

This scheme can effectively reduce the voltage stress on the link capacitor and can achieve the power factor correction (PFC) without a dead band at line zero-crossings, which reduces the harmonic distortion in ac line current. Theoretical analysis of the converter is presented and design guidelines to select circuit components are given. The experimental results on a 60?W (15?V, 4?A), 100?kHz ac/dc converter show that maximum link voltage and maximum efficiency are around 415?V and 82%, respectively. The power factor is above 0.96 under universal line input and load conditions.  相似文献   

12.
Impending international standards on harmonic current levels drawn by single-phase mains-operated equipment have created a need for low-cost off-line power-factor-corrected switched-mode power supply topologies in the power range up to a few hundred watts. The boost integrated/flyback rectifier/energy storage/DC-DC converter (BIFRED) is one such topology which shows promise in this regard. In particular, the discontinuous-conduction-mode (DCM) BIFRED avoids the light-load high-voltage stress problem associated with the continuous-conduction-mode design, while still achieving the combined advantages of a low-cost single-stage topology with high displacement factor and low total harmonic distortion. In this paper, a practical DCM BIFRED converter with integrated low-loss snubber is investigated from both power and small-signal control perspectives. Design equations are given to ensure DCM operation under closed-loop output voltage control, in which switch duty cycle is varying. Experimental results on a prototype converter are also presented  相似文献   

13.
A new pulsewidth modulation (PWM)-controlled quasi-resonant converter for a high-efficiency plasma display panel (PDP) sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the primary resonant capacitor with a bidirectional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good zero-voltage switching (ZVS) capability, simple control circuits, no hign-voltage ringing problem of rectifier diodes, no dc offset of the magnetizing current and low-voltage stresses of power switches. Thus, the proposed converter shows higher efficiency than that of a half-bridge LLC resonant converter under light load condition. Although it shows the lower efficiency at heavy load, because of the increased power loss in auxiliary circuit, it still shows the high efficiency around 94%. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.   相似文献   

14.
This paper presents an improvement of the well-known conventional three-phase diode bridge rectifier with dc output capacitor. The proposed circuit increases the power factor (PF) at the ac input and reduces the ripple current stress on the smoothing capacitor. The basic concept is the arrangement of an active voltage source between the output of the diode bridge and the smoothing capacitor which is controlled in a way that it emulates an ideal smoothing inductor. With this the input currents of the diode bridge which usually show high peak amplitudes are converted into a 120/spl deg/ rectangular shape which ideally results in a total PF of 0.955. The active voltage source mentioned before is realized by a low-voltage switch-mode converter stage of small power rating as compared to the output power of the rectifier. Starting with a brief discussion of basic three-phase rectifier techniques and of the drawbacks of three-phase diode bridge rectifiers with capacitive smoothing, the concept of the proposed active smoothing is described and the stationary operation is analyzed. Furthermore, control concepts as well as design considerations and analyses of the dynamic systems behavior are given. Finally, measurements taken from a laboratory model are presented.  相似文献   

15.
A single-stage power-factor-corrected AC/DC converter   总被引:1,自引:0,他引:1  
This paper presents a single-stage isolated converter topology designed to achieve a regulated DC output voltage having no low-frequency components and a high-input power factor. The topology is derived from the basic two-switch forward converter, but incorporates an additional transformer winding, inductor and a few diodes. The proposed circuit inherently forces the input current to be discontinuous and AC modulated to achieve high-input power factor. The converter output is operated in discontinuous mode to minimize the bulk capacitor voltage variations when the output load is varied. Analysis of the converter is presented, and performance characteristics are given. Design guidelines to select critical components of the circuit are presented. Experimental results on a 150 W 50 kHz universal input (90-265 V) 54.75 V output AC/DC converter are given which confirm the predicted performance of the proposed topology  相似文献   

16.
提出了一种应用于48 V-1 V系统的隔离型混合模式降压变换器,利用飞电容和变压器实现高转换比应用下的高转换效率。混合变换器结合了开关电容变换器和开关电感变换器,其中飞电容承担了部分电压降,实现了功率开关管电压应力的降低。由于开关节点处的电压摆幅较小,开关损耗随之减小;通过使用更低压的功率开关管,实现功率开关管导通损耗减小。在此基础上,隔离型混合模式降压变换器通过时序控制可以实现软开关,进而实现功率开关管开关损耗减小,使得整体效率提升。在隔离型混合模式降压变换器中,飞电容还具有隔直电容的作用,可以防止变压器偏磁。在典型应用下,即在48 V输入电压、1 V输出电压、500 kHz开关频率下,峰值效率为94.84%。  相似文献   

17.
A single-stage quasi-resonant flyback converter using the synchronous rectifier (SR) is proposed for improving power factor and system efficiency. This converter operates at the critical conduction mode with the variable frequency (VF) control to reduce the switching loss of the primary switch. The bulk capacitor voltage can be independent of the output load and kept within a practical range for the universal line input. Therefore, the problem of high-voltage stress across the bulk capacitor is reduced. The proposed converter features relatively low bulk capacitor voltage in the universal line voltage and also complies with the Standard IEC 61000-3-2 Class D limits. Moreover, since it uses the voltage-driven SR, it achieves a high efficiency. The operational principle and theoretical analysis are presented. Experimental results for a 100?W (19?V/5.3?A) adapter at the VF were obtained to show the performance of the proposed converter.  相似文献   

18.
The growth of the power industry is gaining greater momentum as the usage of the non-conventional energy sources that include fuel, solar, and wind energies, increases. Wind energy conversion systems (WECSs) are gaining more popularity and are expected to be able to control the power at the output. This paper describes the current control (CC), non-linear carrier charge control (NLCCC), and fuzzy logic control (FLC) applied to the single-ended primary inductor converter (SEPIC)-based WECS. The current controller has an inherent overcurrent protection with better line noise rejection. The pulses for the switch of the SEPIC are obtained by comparing the current flowing through it with the virtual current reference. FLC is also investigated for the micro-wind energy conversion system (μWECS), since it improves the damping characteristics of WECS over a wide range of operating points. This cannot attain the unity power factor rectification. In this paper, NLCCC is proposed for high-power factor rectifier-based SEPIC in continuous conduction mode (CCM) for μWECS. The proposed converter provides an output voltage with low input current ripple due to the presence of the inductor at the input side. By comparing the signal proportional to the integral of switch current with a periodic non-linear carrier wave, the duty ratio of the converter switch is determined for the NLCC controller. By selecting the shape of the periodic non-linear carrier wave the input-line current can be made to follow the input-line voltage. This work employs a parabolic carrier waveform generator. The output voltage is regulated for changes in the wind speed. The results obtained prove the effectiveness of the NLCC controller in improving the power factor.  相似文献   

19.
This paper presents a new single-stage power factor correction ac/dc converter based on a three-level half-bridge resonant converter topology. The proposed circuit integrates the operation of the boost power factor preregulator and the three-level resonant dc/dc converter. A variable-frequency asymmetrical pulsewidth modulation controller is proposed for this converter. This control technique is based on two integrated control loops: the output voltage is regulated by controlling the switching frequency of the resonant converter, whereas the dc-bus voltage and input current are regulated by means of duty cycle control of the boost part of the converter. This provides a regulated output voltage and a nearly constant dc-bus voltage regardless of the loading condition; this, in turn, allows using smaller switches and consequently having a lower on resistance helping to reduce conduction losses. Zero-voltage switching is also achieved for a wide range of loading and input voltage. The resulting circuit, therefore, has high conversion efficiency making it suitable for high-power wide-input-voltage-range applications. The effectiveness of this method is verified on a 2.3-kW 48-V converter with input voltage (90–265 Vrms).   相似文献   

20.
采用SMIC 0.13μm CMOS工艺,设计实现了开关频率达到250 MHz,单片集成的降压型电源转换器。为了提高电源转换效率,该转换器中的片上电感采用非对称性设计方法,提高了电感的品质因数。采用了高密度片上滤波电容来稳定输出电压,同时对单位电容尺寸的优化设计减小了电容的等效串联电阻以及输出电压纹波。测试结果表明,芯片输入电压为3.3 V,当输出2.5 V电压时,峰值效率达到了80%,最大输出电流达到270 mA;当输出1.8 V电压时,峰值效率达到了70%,最大输出电流达到400 mA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号