共查询到20条相似文献,搜索用时 46 毫秒
1.
神经网络响应面逼近在飞机总体优化设计中的应用 总被引:4,自引:1,他引:4
介绍了响应面方法的概念及其数学描述形式。分析了通过神经网络来实现响应面模型构建的方法。结合飞机设计的复杂过程,采用基于响应面的多学科优化方法解决不同的学科之间存在着的各种耦合关系、以及多个学科的综合协调问题。通过神经网络响应面来完成各个子学科空间之间的数据交换与协调,以此来逼近设计空间上的最优解。给出了一个飞机总体方案设计中解决飞机概念尺寸的算例,在子空间和系统层中均采用遗传算法进行优化,并与单一采用遗传算法解决同一问题的结果进行了对比。研究表明,应用神经网络构建的响应面模型能够减少系统的分析次数并能够很大程度上提高模型的精度,最终在设计空间内寻找出较好的设计方案。 相似文献
2.
3.
针对汽车电机支架在增大载荷力条件下的结构优化问题,利用响应面法和多目标优化算法相结合,对电机支架进行有限元分析和多目标结构优化设计.以应力值和支架质量为优化目标,通过表面中心复合实验设计和响应面方法构建响应面模型,并在此基础上应用Hammersley筛选法对其进行多目标优化求解.优化结果表明在载荷力增大8.3%的情况下... 相似文献
4.
5.
为满足爬壁机器人在工作过程中高强度、轻量化的设计要求,提出一种基于参数相关性筛选的多目标优化方法。将爬壁机器人底盘以及侧挡板的5个参数作为设计变量,经过参数相关性分析,筛选后得到对机器人结构性能影响灵敏度较高的3个设计变量,以质量最小、位移变形最小和应力最大为优化目标,经过多元回归分析和帕累托方差分析拟合得到二项式响应面模型,采用非支配排序遗传算法对爬壁机器人机身进行多目标优化。结果表明,经过参数相关性筛选后,计算量大大减少,机身质量减少1.7 kg,最大位移变形减小0.1 mm,最大等效应力减少1.36 MPa,模态固有频率增加,避免共振现象。 相似文献
6.
7.
利用响应面模型和结构疲劳寿命可视化技术,给出了一种基于疲劳寿命的结构优化设计方法.通过某飞机起落架扭力臂疲劳寿命优化设计算例,验证了方法的有效性.该方法对工程中结构的疲劳优化设计具有重要的参考价值. 相似文献
8.
9.
10.
机载光电集成箱在战斗机飞行过程中面临振动、冲击等恶劣工作环境。本文旨在提高光电集成箱抗振动干扰能力和结构可靠性,以减少最大变形量和提升结构一阶模态频率为目标,对光电集成箱进行多目标优化设计。根据加速度过载极端条件对原始光电集成箱三维模型进行特定载荷下的静力分析和普通约束条件下的模态分析;采用最佳空间填充设计法(OSFD)法进行实验设计,提取结构设计参数并建立样本空间,响应面模型运用Kriging法进行构建;以最小化结构变形量、提升结构第一阶模态频率作为优化目标,以结构等效应力和质量为约束条件,运用MOGA遗传算法对构建响应面模型进行了优化求解,得到响应面模型最优解,最后对模型进行参数化重构和验证。优化结果显示:经过优化后的光电集成箱,最大变形量减少了44.02%,基频提高了33.6%,质量减少了8%,有效地提升了光电集成箱的动力学性能和可靠性。 相似文献
11.
基于神经网络响应面的疲劳裂纹扩展寿命的可靠性分析 总被引:5,自引:0,他引:5
当失效形式的极限状态方程中随机变量个数较多或非线性较高时,其形式很复杂,因此传统的计算失效概率的方法不再适用。针对疲劳裂纹扩展寿命失效概率计算的复杂性,提出基于神经网络响应面的可靠性分析方法。首先建立神经网络响应面模拟疲劳裂纹扩展寿命的极限状态方程,然后使用遗传算法(GA)计算可靠性指标。数值试验表明,本方法可以快速、精确地模拟疲劳裂纹扩展寿命的极限状态函数,进而计算出失效概率和可靠性指标。同其他模拟技术相比,在精度相同的情况下,神经网络响应面法可以大大减少模拟时间。 相似文献
12.
ADAPTIVE LEARNING CONTROL OF CUTTING PARAMETERS FOR SCULPTURED SURFACE CUTTING BASED ON GENETIC ALGORITHMS AND NEURAL NETWORK 总被引:1,自引:0,他引:1
Fu Hongya Wang Yongzhang Lu Hua Fu Yunzhong Department of Mechanical Engineering Harbin Institute of Technology Harbin ChinaTakaaki Nagao University of Tokyo Japan 《机械工程学报(英文版)》2002,15(2):145-148
An adaptive learning control scheme intended to the on-line optimization of sculptured surface cutting process is presented. The scheme uses a back-propagation neural network to learn the relationships between process inputs and process states. The cutting parameters of the process model are optimized through a genetic algorithms(GA). The capacity of the proposed scheme for determining optimum process inputs under a variety of process conditions and optimization strategies is evaluated on the basis of milling of a sculptured surface using a ball-end mill. The experimental results show that the neural network could model the cutting process efficiently, and the cutting conditions such as spindle speed could be regulated for achieving high efficiency and high quality. Therefore the proposed approach can be well applied to the manufacturing of dies and molds. 相似文献
13.
14.
15.
SURFACE ROUGHNESS PREDICTION USING HYBRID NEURAL NETWORKS 总被引:2,自引:0,他引:2
Surface roughness is an important outcome in the machining process and it forms a major part in the manufacturing system. Surface roughness depends on different machining parameters and its prediction and control is a challenge to the researchers. There is a need to predict surface roughness prior to machining to attain higher productivity levels. Owing to advances in computing power there is an increase in the demand for the use of intelligent techniques. Recent research is directed towards hybridization of intelligent techniques to make the best out of each technique. This article proposes the development of a novel hybrid Neural Network (NN) trained with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for the prediction of surface roughness. The proposed hybrid neural network is found to be competent in terms of computational speed and efficiency over the neural network model. 相似文献
16.
Surface roughness is an important outcome in the machining process and it forms a major part in the manufacturing system. Surface roughness depends on different machining parameters and its prediction and control is a challenge to the researchers. There is a need to predict surface roughness prior to machining to attain higher productivity levels. Owing to advances in computing power there is an increase in the demand for the use of intelligent techniques. Recent research is directed towards hybridization of intelligent techniques to make the best out of each technique. This article proposes the development of a novel hybrid Neural Network (NN) trained with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for the prediction of surface roughness. The proposed hybrid neural network is found to be competent in terms of computational speed and efficiency over the neural network model. 相似文献
17.
18.
19.
GA-BASED PID NEURAL NETWORK CONTROL FOR MAGNETIC BEARING SYSTEMS 总被引:1,自引:0,他引:1
LI Guodong ZHANG Qingchun LIANG Yingchun School of Mechanical Electrical Engineering Harbin Institute of Technology Harbin China 《机械工程学报(英文版)》2007,(2)
In order to overcome the system non-linearity and uncertainty inherent in magnetic bear-ing systems,a GA(genetic algorithm)-based PID neural network controller is designed and trained to emulate the operation of a complete system (magnetic bearing,controller,and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with un-known dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes),increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems. 相似文献
20.
蚁群算法在复合材料层合板优化设计中的应用 总被引:2,自引:0,他引:2
对含有2N层的对称层合板铺层优化,采用多层城市的思想,即将每层备选角度设为一层城市,共同组成具有相同特征的N层城市,优化的过程就是在N层城市中每层选择一座城市,组成N维铺层角度向量.文中采用含有变异操作的蚁群算法,按照求解旅行商问题(traveling salesman problem ,TSP)的方法和过程,对已知铺层总数复合材料层合板的某个参数进行优化设计,最终确定各角度的铺层数及铺层顺序.算例结果表明,经过有限次数的循环,即能收敛到满意的结果,优化过程显示蚁群算法的良好鲁棒性,同时该方法为解决复合材料结构优化及其他组合优化问题提供一种新的思路. 相似文献