首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dense wavelength-division multiplexing (DWDM) technology has provided tremendous transmission capacity in optical fiber communications. However, switching and routing capacity is still far behind transmission capacity. This is because most of today's packet switches and routers are implemented using electronic technologies. Optical packet switches are the potential candidate to boost switching capacity to be comparable with transmission capacity. In this paper, we present a photonic asynchronous transfer mode (ATM) front-end processor that has been implemented and is to be used in an optically transparent WDM ATM multicast (3M) switch. We have successfully demonstrate the front-end processor in two different experiments. One performs cell delineation based on ITU standards and overwrites VCI/VPI optically at 2.5 Gb/s. The other performs cell synchronization, where cells from different input ports running at 2.5 Gb/s are phase-aligned in the optical domain before they are routed in the switch fabric. The resolution of alignment is achieved to the extent of 100 ps (or 1/4 bit). An integrated 1×2 Y-junction semiconductor optical amplifier (SOA) switch has been developed to facilitate the cell synchronizer  相似文献   

2.
A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10/sup -12/ or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.  相似文献   

3.
A rack-mounted prototype of a broadcast-and-select (B and S) photonic ATM switch is fabricated. This switch has an optical output buffer utilizing wavelength division multiplexed (WDM) signals. The WDM technology solves. The cell-collision problem in a broadcast-and-select network and leads to a simple network architecture and the broadcast/multicast function. The prototype can handle 10-Gb/s nonreturn-to-zero (NRZ) coded cells and 5-Gb/s Manchester-coded cells and has a switch size of four. In this prototype, the level and timing design are key issues. Cell-by-cell level fluctuation is overcome by minimizing the loss difference between the optical paths and adopting a differential receiver capable of auto-thresholding. The temperature control of delay lines was successful in maintaining the phase synchronization. Using these techniques, we are able to provide a WDM highway with a bit error rate of less than 10-12. Fundamental photonic ATM switching functions, such as optical buffering and fast wavelength-channel selection, are achieved. We show our experimental results and demonstrate the high performance and stable operation of a photonic ATM switch for use in high-speed optical switching systems as an interconnect switch for a modular ATM switch and an ATM cross-connect switch  相似文献   

4.
A network robust to future evolution in network topologies or transmission formats and bit rates, which would be achieved by introducing an all-optical transparent layer in the transport network hierarchy is considered. The transparency would permit use of physically common fiber lines and nodes for different transmission hierarchies and/or formats. A transparent network could be achieved by combining photonic switching with electronic switching technology in the network nodes. A combination of wavelength routing and space-division switching in the optical layer would increase the capacity, as well as the flexibility in a network, allowing routing with higher granularity within the optical layer. Two optical cross-connect demonstrators have been set up. One demonstrates protection switching and restoration of traffic in a future transport network, and the other demonstrates routing of subscriber signals to different service switches in a local exchange. Space switches, tunable lasers and filters are the key technologies used to obtain enhanced flexibility  相似文献   

5.
Photonic packet switches offer high speed, data rate and format transparency, and flexibility required by future computer communications and cell-based telecommunications networks. In this paper, we review experimental progress in state-of-the-art photonic packet switches with an emphasis on all-optical guided-wave systems. The term all-optical implies that the data portion of a packet remains in optical format from the source to the destination. While the data remain all-optical, both optical and optoelectronic techniques have been used to process packet routing functions based on extremely simple routing protocols. An overview of the design issues for all-optical photonic packet switching is given and contrasted with electronic packet switch implementations. Low-level functions that have been experimentally implemented include routing, contention resolution, synchronization, and header regeneration. System level demonstrations, including centralized photonic switching and distributed all-optical multihop networks, will be reviewed  相似文献   

6.
We report in this paper the architectural design and implementation of all-optical packet networks. Using photonic switches to route information, an all-optical network has the advantages of bit rate, wavelength, and signal format transparencies. Within the transparency distance, the network is capable of handling a widely heterogeneous mix of traffic. We will describe our research on the implementation of all-optical backbone switches. The switch components including frame synchronizers, frame delineation units, frame header over-writing units, wavelength converters, frame concentrators, and WDM buffers were constructed at 2.5 Gb/s. Their subsystem and device structure as well as preliminary performance are reported.  相似文献   

7.
The wide deployment of wavelength-division multiplexing technology and new transmission techniques have resulted in significant increases in the transmission capacity in optical fibers, both in the number of wavelengths and the bandwidth of each wavelength channel. Meanwhile, the fast growth of the Internet demands more data switching capacity in the network in order to deliver high bandwidth to end users. Although the capacity of electronic routers has been increasing consistently in the past, optical switching appears to be a more cost-effective way to switch individual wavelengths. As the bit rate per wavelength channel continues to grow, optical subwavelength switching emerges as a new paradigm capable of dynamically delivering the vast bandwidth WDM offers. This article discusses one of such techniques, namely optical packet switching, and its performance perceived by end users in optical mesh networks. Specifically, our investigation reveals the benefit of using electrical ingress buffering and traffic aggregation to reduce packet-loss rate of optical packet-switched networks. Through simulation experiments, we present an evaluation of the network's TCP-level performance based on the proposed architecture  相似文献   

8.
A coherent photonic wavelength-division (WD) switching system, utilizing a coherent wavelength switch (λ switch), is proposed. In the proposed coherent λ switch, the tunable wavelength filter function is accomplished using coherent optical detection with a wavelength tunable local oscillator. The coherent photonic WD switching system has the following features; (1) low crosstalk switching for dense WDM signal, and (2) large line capacity capability. Design considerations show that 32 wavelength division channels can be available with a coherent λ switch. It is also shown that a broadband metropolitan-area-network with over 1000 line capacity is possible, using a multistage connection in the coherent λ switches. The switching function of the coherent λ switch is demonstrated in a two-channel wavelength-synchronized switching experiment, using 8-GHz-spaced, 280-Mb/s optical FSK signals  相似文献   

9.
High-speed photonic switching networks can switch optical signals at the rate of several terabits per second. However, they suffer from an intrinsic crosstalk problem when two optical signals cross at the same switch element. To avoid crosstalk, active connections must be node disjoint in the switching network. In this paper, a sequence of decomposition and merge operations, called conjugate transformation, performed on each switch element to tackle this problem, is proposed. The network resulting from this transformation is called the conjugate network. By using the numbering schemes of networks, the authors prove that if the route assignments in the original network are link disjoint, their corresponding ones in the conjugate network would be node disjoint. Thus, traditional nonblocking switching networks can be transformed into crosstalk-free optical switches in a routine manner. Furthermore, it has been shown that crosstalk-free multicast switches can also be obtained from existing nonblocking multicast switches via the same conjugate transformation.  相似文献   

10.
PetaStar: a petabit photonic packet switch   总被引:6,自引:0,他引:6  
This paper presents a new petabit photonic packet switch architecture, called PetaStar. Using a new multidimensional photonic multiplexing scheme that includes space, time, wavelength, and subcarrier domains, PetaStar is based on a three-stage Clos-network photonic switch fabric to provide scalable large-dimension switch interconnections with nanosecond reconfiguration speed. Packet buffering is implemented electronically at the input and output port controllers, allowing the central photonic switch fabric to transport high-speed optical signals without electrical-to-optical conversion. Optical time-division multiplexing technology further scales port speed beyond electronic speed up to 160 Gb/s to minimize the fiber connections. To solve output port contention and internal blocking in the three-stage Clos-network switch, we present a new matching scheme, called c-MAC, a concurrent matching algorithm for Clos-network switches. It is highly distributed such that the input-output matching and routing-path finding are concurrently performed by scheduling modules. One feasible architecture for the c-MAC scheme, where a crosspoint switch is used to provide the interconnections between the arbitration modules, is also proposed. With the c-MAC scheme, and an internal speedup of 1.5, PetaStar with a switch size of 6400 /spl times/ 6400 and total capacity of 1.024 petabit/s can be achieved at a throughput close to 100% under various traffic conditions.  相似文献   

11.
Architectures for packet switches are approaching the limit of electronic switching speed. This raises the question of how best to utilize advances in photonic technology to enable higher speeds. The authors introduce cascaded optical delay line (COD) architectures. The COD architectures utilize an extremely simple distributed electronic control algorithm to configure the states of 2×2 photonic switches and use optical fiber delay lines to temporarily buffer packets if necessary. The simplicity of the architectures may also make them suitable for “lightweight” all-electronic implementations. For optical implementations, the number of 2×2 photonic switches used is a significant factor determining cost. The authors present a “baseline” architecture for a 2×2 buffered packet switch that is work conserving and has the first-in, first-out (FIFO) property. If the arrival processes are independent and without memory, the maximum utilization factor is ρ, and the maximum acceptable packet loss probability is ϵ, then the required number of 2×2 photonic switches is O(log(ϵ)/log(γ)), where γ=ρ2/(ρ2+4-4ρ). If one modifies the baseline architecture by changing the delay line lengths then the system is no longer work conserving and loses the FIFO property, but the required number of 2×2 photonic switches is reduced to O(log[log(ϵ)/log(γ)]). The required number of 2×2 photonic switches is essentially insensitive to the distribution of packet arrivals, but long delay lines are required for bursty traffic  相似文献   

12.
The first reported demonstration of a 2×2 self-routing photonic switch is presented. Output port contention is handled using a deflection routing protocol implemented by a pipelined electrooptic processor. Routing and data bits are encoded in separated multiwavelength channels occupying only a portion of a full packet period. This encoding technique accommodates timing uncertainty, reduces the effective electronic processing rate at the switching node, and maintains a high-link throughput. In the authors' single-node demonstration. The packet header contains two address bits plus one priority bit for contention resolution, and one packet payload is represented by a single bit. Control information is encoded at 830 nm with 3.6 nm channel spacing and data at 1300 nm. The switch, implemented with longer wavelength transmission bands, is an efficient building block for large-scale, wide-area, high-capacity networks  相似文献   

13.
All-optical wavelength division multiplexing (WDM) networks are expected to realize the potential of optical technologies to implement different networking functionalities in the optical domain. A key component in WDM networks is the optical switch that provides the basic functionality of connecting input ports to output ports. Existing WDM switches make use of space switches and wavelength converters (WCs) to realize switching. However, this not only increases the size and the complexity of the switch but also bears heavily on the cost. In this paper, the authors propose a new class of photonic switch architectures called wavelength-exchanging cross connect (WEX) that provides several advantages over existing switches by enabling a single-step space switching and wavelength conversion and thus eliminating the need for a separate conversion stage. This greatly enhances the switch architecture by reducing its size and complexity. The new class of cross-connect architectures is based on the proposed concept of a wavelength-exchange optical crossbar (WOC). The WOC concept is realized using the simultaneous exchange between two optical signals. The proposed WEX architecture is highly scalable. To establish scalability, the authors present a systematic method of developing instances of the switch architectures of an arbitrary large size.  相似文献   

14.
Shared-memory based packet switches are known to provide the best possible throughput performance for bursty data traffic in high-speed packet networks and internets compared with other buffering strategies under conditions of identical memory resources deployed in the switch. However, scaling of shared-memory packet switches to a larger size has been restricted mainly due to the physical limitations imposed by the memory-access speed and the centralized control for switching functions in shared-memory switches. A new scalable architecture for a shared-memory packet switch, called the sliding-window (SW) switch, is proposed to overcome these limitations. The SW switch introduces a new class of switching architecture, where physically separate multiple memory modules are logically shared among all the ports of the switch, and the control is decentralized. The SW switch alleviates the bottleneck caused by the centralized control of switching functions in large shared-memory switches. Decentralized switching functions enable the SW switch to operate in a pipeline fashion to enhance scalability and switching capacity compared with that of previously known classes of shared-memory switch architecture.  相似文献   

15.
Optical Interconnection Networks for Terabit Packet Switches   总被引:2,自引:0,他引:2  
The challenge of building packet switches with terabit capacity is being met by wavelength division multiplexing (WDM) where the benefits of optical fiber are exploited. Two kinds of WDM-based bufferless optical interconnection networks are proposed in this paper to interconnect multiple electronic packet switch modules. One is based on 3-stage Clos principle and the other is based on broadcast-and-select principle. The proposed optical interconnection networks are implemented with small modular structures to provide capacities in the range of terabit per second. Their architectures, component and interconnection complexity, and power budget analyzes are presented. In addition, the crosstalk caused by the finite ON-OFF ratio of semiconductor optical amplifier is discussed. Bit error rates with respect to different ON-OFF ratios and extinction ratios are also evaluated. It is concluded that it is feasible to implement optical interconnection networks by using state-of-the-art WDM technology, and they are excellent candidates for future terabit packet switching systems.  相似文献   

16.
随着网络传输数据的爆炸式增长,传统集成电路芯片面临着难以进一步提升交换速率及继续扩大容量等挑战。相较于传统电子芯片,硅基光子器件具有交换速度快、功耗低、带宽大和与CMOS工艺兼容性好等优点,可满足下一代全光交换网络、数据中心和高性能计算光互连的迫切需求,被视为在后摩尔时代突破芯片容量最具前途的解决方案,受到日益广泛关注。文章介绍了硅基光子芯片中光开关单元及阵列的技术原理和发展现状,重点论述了MZI型、MRR型开关单元,以及常见阵列拓扑结构,介绍了近年来大规模光开关阵列的国内外研究进展,讨论了未来硅基光开关及阵列研究中面临的主要问题和解决方法。  相似文献   

17.
This paper presents an analysis of the energy consumption in a number of optical switch fabric architectures for optical packet-switched applications and compares them to electronic switch fabrics. Optical packet switching does not appear to offer any substantial power consumption advantages over electronic packet switching. Therefore, there is no compelling case for optical packet switching.  相似文献   

18.
A next-generation optical regional access network   总被引:2,自引:0,他引:2  
We describe an optical regional access network which combines electronic IP routing with intelligent networking functionality of the optical WDM layer. The optical WDM layer provides such networking functions as network logical topology reconfiguration, optical flow switching to offload traffic and bypass IP routers, wavelength routing of signals, protection switching and restoration in the optical domain, and flexible network service provisioning by reconfigurable wavelength connectivity. We discuss key enabling technologies for the WDM layer and describe their limitations. The symbiosis of electronic and optical WDM networking functions also allows support for heterogeneous format traffic and will enable efficient gigabit-per-second user access in next-generation Internet networks  相似文献   

19.
Matching algorithms for three-stage bufferless Clos network switches   总被引:6,自引:0,他引:6  
Three-stage Clos network switches are an attractive solution for future broadband packet routers due to their modularity and scalability. Most three-stage Clos network switches assume either all modules are space switches without memory (bufferless), or employ shared memory modules in the first and third stages (buffered). The former is also referred to as the space-space-space (S/sup 3/) Clos network switch, while the latter is referred to as the memory-space-memory (MSM) Clos network switch. We provide a survey of recent literature concerning switching schemes in the S/sup 3/ Clos network switch. The switching problem in the S/sup 3/ Clos network switch can be divided into two major parts, namely port-to-port matching (scheduling) and route assignment between the first and third stages. Traditionally, researchers have proposed algorithms to solve these issues separately. Recently, a new class of switching algorithms, called matching algorithms for Clos (MAC), has been proposed to solve scheduling and route assignment simultaneously. We focus on the MAC schemes and show that the new class of algorithms can achieve high performance and maintain good scalability.  相似文献   

20.
This paper proposes the photonic knockout switch that uses wavelength division multiplexing (WDM). The proposed switch uses two types of WDM switching: broadcast-and-select (B and S) switching and wavelength routing. To extend the size of the knockout switch concentrator, a multi-output-port wavelength-channel selector is used, which enables us to reduce the number of optical gates and wavelength routers. Simple and distributed contention control becomes possible in the optical domain through the use of the wavelength-routing switch. In this switch, coherent crosstalk is a serious problem. We measured the bit error rates of a four-output-port wavelength-channel selector. The power penalty due to the presence of coherent crosstalk is less than 1 dB  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号