首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
针对非线性动态传感器模型辨识问题,提出一种新的Hammerstein模型神经网络结构辨识法。非线性动态传感器系统采用Hammerstein模型描述,将系统分解为非线性静态增益串接线性动态环节。再设计一种网络权系数对应于相应的Hammerstein模型参数的新型神经网络结构,推导了基于反向传播的网络权系数调整方法。通过网络迭代训练同时得到静态与动态两个环节的模型参数。最后通过一个H模型的数值仿真来验证方法的有效性,仿真结果表明所提辨识方法是有效的。  相似文献   

2.
提出一种新的利用支持向量回归机(SVR)的非线性动态系统维纳(Wiener)模型补偿方法.首先,将非线性动态系统用Wiener模型描述成线性动态子环节和非线性静态增益;再设计结构上与之对应的Wiener补偿器,并进一步将其变换为可用SVR辨识的线性中间模型;最后,通过关系矩阵将中间模型的估计值转换为Wiener补偿器的实际参数.用实际压力响应系统的动态标定实验数据进行测试,结果表明,与最小二乘方法比较,所提方法建立的Wiener补偿器具有更强的抗干扰能力.因此,该研究为非线性动态系统补偿又提供了一种可选方法.  相似文献   

3.
针对利用Wiener模型表达的具有动态非线性的传感器进行系统辨识和性能补偿。将系统分解为动态非线性环节和静态线性环节,利用函数链人工神经网络和遗传算法分别进行系统辨识,通过静态非线性补偿将系统简化为线性系统,再进行动态性能补偿。利用LabVIEW设计虚拟仪器,经过仿真表明该方法是有效的。  相似文献   

4.
Hammerstein模型广泛应用于非线性系统的辨识中,其结构是由非线性静态增益部分和一个线性动态部分串联。提出一种Hammerstein型神经网络用来模拟传统的Hammerstein模型,并将其应用于非线性动态系统的辨识中。由Lipschitz熵来确定Hammerstein型神经网络的阶次,并利用反向传播算法对网络权值的进行训练。仿真结果表明,Hammerstein型神经网络具有较好的非线性动态系统辨识性能。  相似文献   

5.
基于SVR的传感器Hammerstein模型辨识   总被引:1,自引:0,他引:1  
提出一种基于支持向量回归机的非线性动态传感器Hammerstein模型辨识方法并给出了相关的数学理论及学习算法.在该模型中,用非线性静态子环节和线性动态子环节串联来描述传感器的非线性动态特性.再利用函数展开将模型的非线性传递函数转换为等价的线性中间模型,并通过SVR求取中间模型参数.最后,推导出中间模型参数与传感器Hammerstein模型参数之间的关系,并由该关系实现非线性静态环节和线性动态环节的同时辨识.用实际力传感器动态标定实验数据进行测试,结果表明与常规非线性传感器辨识方法不同,所提方法只需进行一次动态标定实验就能给出非线性动态模型的数学解析表达式.且建立的力传感器Hammerstein模型阶次为4,而线性动态系统模型则需要6阶才能达到相同的精度.因此该研究为传感器非线性动态系统辨识又提供了一种可选方法.  相似文献   

6.
针对实际测量中传感器存在较大非线性的缺点,提出利用改进型Wiener模型描述传感器动态非线性模型;将Wiener模型的动态线性环节和静态非线性环节分别利用Laguerre函数和最小二乘支持向量机进行辨识,最终实现传感器模型的建立;通过仿真实验验证比较不同方法的辨识误差与速度,最终结果表明该方法在非线性动态传感器模型辨识方面具有明显的速度和精度优势。  相似文献   

7.
吴德会  Dehui Wu 《计算机应用》2007,27(9):2253-2255
提出一种基于支持向量回归机(SVR)的非线性动态系统建模方法。用非线性静态子环节和线性动态子环节串联——Hammerstein模型来描述非线性动态系统。然后,通过函数展开将Hammerstein模型的非线性传递函数转换为等价的线性形式,从而建立起线性中间模型。再由SVR算法辨识出中间模型参数。最后,通过中间模型参数与Hammerstein模型参数之间的关系,实现原系统的非线性静态环节和线性动态环节的同时辨识。用非线性动态系统标定实验数据进行测试,建模结果表明所提方法具有如下优点:1)只需进行一次动态标定实验; 2)能给出非线性动态模型的数学解析表达式;3)充分利用SVR的优点,使所建模型具有更好的鲁棒性。该研究为非线性动态系统建模又提供了一种新方法。  相似文献   

8.
热工系统Hammerstein-Wiener模型辨识   总被引:1,自引:0,他引:1  
热工系统中的很多生产环节是非线性时滞系统,其辨识问题一直是制约热工系统发展的关键问题.Hammerstein-Wiener模型是Hammerstein模型和Wiener模型的复合模型,可以较好地表达生产系统的动态特性和静态特性.将Hammerstein-Wiener模型辨识方法应用于热工系统的辨识中,非线性部分用多项式表示,线性部分用差分方程表示.用粒子群算法将模型的辨识问题转化为参数空间上的寻优问题,求得该模型的待定参数在参数空间上的最优解.一系列仿真的结果表明,基于粒子群算法的Hammerstein-Wiener模型在热工系统的辨识中有深远的实践意义.  相似文献   

9.
针对实际工业过程中普遍存在的有色噪声,本文提出一种基于递推增广最小二乘算法的神经模糊Hammerstein模型辨识方法,突破了传统的Hammerstein模型迭代分离算法.首先,利用多信号源实现Hammerstein模型中静态非线性环节和动态线性环节的分离,大大简化了辨识过程,提高了串联环节参数的分离精度.其次,利用长除法将噪声模型用有限脉冲响应模型逼近,采用增广递推最小二乘法进行线性环节的参数估计.最后,采用神经模糊模型拟合静态非线性环节,同时设计了神经模糊模型参数的非迭代优化算法,改善了模型的使用范围.该方法保证了模型的预测精度,对含有色噪声的非线性系统具有较好的拟合效果.仿真结果验证了上述方法的有效性.  相似文献   

10.
针对大工业系统中Hammerstein模型,提出一种稳态与动态辨识相结合的子空间模型-分散辨识两步法.此方法是将设定点的阶跃信号作为输入辨识信号,对静态非线性增益部分和线性动态部分进行辨识.很好地解决了传统两步法中非线性求解难和两步之间缺乏有机沟通的问题.仿真结果表明该方法的有效性和实用性.  相似文献   

11.
一种基于动态人工神经网络的Wiener模型辨识   总被引:7,自引:0,他引:7  
提出了一种新的辨识模型对Wiener模型进行辨识,该模型 线性动态神经元串联一静态网络模型组成,利用线性动态神经元对Wiener模型的线性动态部分建模,利用静态BP网络逼近模型的静态非线性部分,并且给出了统一的BP辨识算法,仿真结果表明了该方法的有效性。  相似文献   

12.
基于W iener 模型的混沌系统辨识研究   总被引:4,自引:0,他引:4  
提出一种基于Wiener模型辨识混沌系统的新方法。该方法利用三层前馈神经网络来辨识Wiener模型中的静态非线性环节和学习混沌系统的内在规律性。同时给出了辨识混沌系统的结构和网络权值调整的学习算法。对Henon系统的仿真结果表明,该方法是有效的。  相似文献   

13.
A novel identification algorithm for neuro-fuzzy based single-input-single-output (SISO) Wiener model with colored noises is presented in this paper. The separable signal is adopted to identify the Wiener model, leading to the identification problem of the linear part separated from nonlinear counterpart. Then, the correlation analysis method can be employed for identification of linear part. Moreover, in the presence of random signal, the least square method based parameters estimation algorithm of static nonlinear part are proposed to avoid the impact of colored noise. As a result, proposed method can circumvent the problem of initialization and convergence of the model parameters encountered by the existing iterative algorithms used for identification of Wiener model. Examples are used to verify the effectiveness of the proposed method.  相似文献   

14.
Nonlinear system identification using optimized dynamic neural network   总被引:1,自引:0,他引:1  
W.F.  Y.Q.  Z.Y.  Y.K.   《Neurocomputing》2009,72(13-15):3277
In this paper, both off-line architecture optimization and on-line adaptation have been developed for a dynamic neural network (DNN) in nonlinear system identification. In the off-line architecture optimization, a new effective encoding scheme—Direct Matrix Mapping Encoding (DMME) method is proposed to represent the structure of neural network by establishing connection matrices. A series of GA operations are applied to the connection matrices to find the optimal number of neurons on each hidden layer and interconnection between two neighboring layers of DNN. The hybrid training is adopted to evolve the architecture, and to tune the weights and input delays of DNN by combining GA with the modified adaptation laws. The modified adaptation laws are subsequently used to tune the input time delays, weights and linear parameters in the optimized DNN-based model in on-line nonlinear system identification. The effectiveness of the architecture optimization and adaptation is extensively tested by means of two nonlinear system identification examples.  相似文献   

15.
This work is concerned with identification of Wiener models (a linear dynamic part connected in series with a nonlinear dynamic one). A neural network with one hidden layer is used as the nonlinear block of the model, two network configurations are considered. For model identification three algorithms are described. In the first case model accuracy only in transient conditions is considered, only the dynamic data is used for model training. In the next two algorithms model accuracy in both transient and steady‐state conditions is considered, dynamic and steady‐state data sets are used. The steady‐state model errors are taken into account by an additional term in the minimized cost‐function or by additional inequality constraints. For comparison of discussed algorithms and model structures, identification of a Wiener model of a solid oxide fuel cell (SOFC) process is considered. It is shown that the best results are obtained by the algorithm 2 which minimizes at the same time both dynamic and steady‐state model errors, additional constraints used in the algorithm 3 are computationally quite demanding.  相似文献   

16.
This paper presents a Wiener-type recurrent neural network with a systematic identification algorithm and a control strategy for the identification and control of unknown dynamic nonlinear systems. The proposed Wiener-type recurrent network resembles the conventional Wiener model that consists of a dynamic linear subsystem cascaded with a static nonlinear subsystem. The novelties of our network include: (1) the two subsystems are integrated into a single network whose output is expressed by a nonlinear transformation of a linear state-space equation; (2) the characteristics of the trained network can be analyzed by its associated state-space equation using the well-developed theory of linear systems; and (3) the size of the network structure is determined by the number of state variables (or the system order) of the unknown systems to be identified. To effectively identify a given unknown system from its input–output data, we have developed a systematic identification algorithm that consists of an order determination procedure, a parameterization procedure, and an online learning procedure. The false nearest neighbors algorithm was adopted to acquire a minimal embedding dimension from the input–output data as the system order, and then the eigensystem realization algorithm (ERA) was used to initialize a best-fit state-space representation according to the acquired system order. To improve the overall identification performance, we have derived an online parameter learning algorithm based on an ordered derivatives and momentum terms. Subsequently, a simple feedback linear controller was designed to control the unknown dynamic nonlinear systems without much complexity. Computer simulations and comparisons with some existing recurrent networks have conducted to confirm the effectiveness and superiority of the proposed Wiener-type network, identification algorithm and control strategy.  相似文献   

17.
Nonlinear model predictive control for the ALSTOM gasifier   总被引:2,自引:0,他引:2  
In this work a nonlinear model predictive control based on Wiener model has been developed and used to control the ALSTOM gasifier. The 0% load condition was identified as the most difficult case to control among three operating conditions. A linear model of the plant at 0% load is adopted as a base model for prediction. A nonlinear static gain represented by a feedforward neural network was identified for a particular output channel—namely, fuel gas pressure, to compensate its strong nonlinear behaviour observed in open-loop simulations. By linearising the neural network at each sampling time, the static nonlinear model provides certain adaptation to the linear base model at all other load conditions. The resulting controller showed noticeable performance improvement when compared with pure linear model based predictive control.  相似文献   

18.
Dynamic input–output-models have been identified for columns of an industrial sequential ion-exclusive chromatographic separation unit. Models are aimed at describing motion and form transformation of the fronts of different substances in the columns so that changes in “limit cycles” dynamics and drifts to undesired disturbed states could be observed on-line with model based simulations. The model structure has been innovated on the basis of classical Wiener representation, in which nonlinear dynamic system is described with a combination of linear Laguerre dynamics and static nonlinear mapping. The static mapping is realized here with MLP-type neural network. A separate delay model is needed for describing the movement of the front. The delay time adapts on variations of the process flow rate. Form transformation of the front is described with a dispersion model, which is smoother type Wiener-MLP model. Forward and backward Laguerre presentations are calculated with Laguerre filters. These Laguerre presentations are mapped to the output with a neural network. Dynamics of “salt” and two important compounds have been modeled on the basis of analyzed samples, which were taken in a factory experiment during normal production. A priori information about the process dynamics can be included in the dispersion model by choosing a suitable Laguerre parameter, but otherwise representativeness of the identification data determines validity of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号