首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
lon-implantation-induced selective etching of dielectric materials is considerably diminished with increasing hydrogen content. Making use of the 1H(15N,γ)12C resonance reaction, low-temperature PECVD Si oxide and Si nitride layers were observed to contain 12 and 23 at.% H, respectively. For different reagents etch rates were measured regarding the virgin and ion—implanted-He+ Ne+ at 60, 100 keV — PECVD films.  相似文献   

2.
In this study, plasma density measurements were performed near the plume region of the remote plasma source (RPS) in Ar/ NF3 gas mixtures using a microwave cutoff probe. The measured plasma density is in the range of 10 10 –10 11 cm −3 in the discharge conditions with RPS powers of 2–4 kW and gas pressures of 0.87–4 Torr. The plasma density decreased with increasing gas pressures and RPS powers under various Ar/ NF3 mixing ratios. This decrease in the plasma density measured at the fixed measurement position (plume region) can be understood by the reduction of the electron energy relaxation length with increases in the gas pressures and mixing ratio of NF3/(Ar / NF3). We also performed downstream etching of silicon and silicon oxide films in this system. The etch rate of the silicon films significantly increases while the silicon oxide is slightly etched with the gas pressures and powers. It was also found that the etch rate strongly depends on the wafer position on the processing chamber electrode, and that the etch selectivity reached 96–131 in the discharge conditions of RF powers (3730–4180 W) and gas pressures (3.6–4 Torr).  相似文献   

3.
The sodium potential in the test electrode (a) Pt,O2,Na2ZrO3,ZrO2 was measured by using the emf technique employing Na-β-alumina as the solid electrolyte in conjunction with (b) Pt,O2,Al2O3,NaAl11O17, (c) Pt,O2,Na2MoO4,Na2Mo2O7 and (d) Pt,Na2CO3,CO2,O2 as the reference electrodes over the ranges 880–1045, 700–800 and 850–940 K, respectively. The emf results between electrodes (b) and (c) were utilized for internal consistency checks. From the results on cells formed between (a) and (b) and those on (a) and (c), the standard Gibbs energy of formation, ΔfGo (kJ/mol) of Na2ZrO3 was determined to be −1699.4+0.3652T (K) valid over the temperature range 700–1045 K. The break in the emf data at 1045 K was corroborated by independent TG/DTA measurements carried out on Na2ZrO3 which exhibited an endotherm at 1055 K indicative of a phase transition in Na2ZrO3.  相似文献   

4.
The density and spatial distribution of O2 supermagnetron plasma generated in between two parallel cathodes were measured by optical emission spectroscopy. Uniform plasma could be generated for the cathode spacing of 20–30 mm and a gas pressure of 2–10 mTorr on a magnetic field application of 130 G. The highest optical emission intensity (OEI) was observed at the cathode spacing of about 20 mm. OEIs of O-ions (464.9 nm) and O-radicals (777.1 nm) showed a strong RF-voltage-phase-difference dependencies of two supplied RF powers, and the OEIs at about 150°, i.e. around 180°, were about 2 times stronger than those of a conventional magnetron plasma generated at a gas pressure of 3–80 mTorr. In the spatial distribution measurements of OEIs, high-uniform plasmas were observed at a wide range of the RF phase difference, e.g. 0 and 120°.  相似文献   

5.
Perfluorocarbon gas is widely used in the semiconductor industry. However, perfluorocarbon has a negative effect on the global environment owing to its high global warming potential (GWP) value. An alternative solution is essential. Therefore, we evaluated the possibility of replacing conventional perfluorocarbon etching gases such as CHF3 with C6F12O, which has a low GWP and is in a liquid state at room temperature. In this study, silicon oxynitride (SiON) films were plasma-etched using inductively coupled CF4 +C6F12O+O2 mixed plasmas. Subsequently, the etching characteristics of the film, such as etching rate, etching profile, selectivity over Si, and photoresist, were investigated. A double Langmuir probe was used and optical emission spectroscopy was performed for plasma diagnostics. In addition, a contact angle goniometer and x-ray photoelectron spectroscope were used to confirm the change in the surface properties of the etched SiON film surface. Consequently, the etching characteristics of the C6F12O mixed plasma exhibited a lower etching rate, higher SiON/Si selectivity, lower plasma damage, and more vertical etched profiles than the conventional CHF3 mixed plasma. In addition, the C6F12O gas can be recovered in the liquid state, thereby decreasing global warming. These results confirmed that the C6F12O precursor can sufficiently replace the conventional etching gas.  相似文献   

6.
Silicon nitride ceramics containing cerium as a simulating element of americium were fabricated to clarify proper sintering conditions. Basic properties of sintered specimens were evaluated for utilization to an inert matrix. Commercial powders of silicon nitride and cerium dioxide (16 or 24.6 wt%), and a powder of aluminum oxide or zirconium oxide as a sintering additive (5 wt%) for some specimens were mixed by ball milling in ethanol. Small amounts of stearic acid as a lubricant were also added. The mixed powder was uniaxially pressed into cylindrical pellets. Then, the pellets were embedded in a packing powder composed of 50 wt%-Si3N4 and 50 wt%-BN, and sintered at 2023 or 2073 K for 2 h in a 0.1 MPa N2 atmosphere. Most of the sintered specimens had high densities (>95% TD). Sintered bodies consisted of columnar silicon nitride grains and grain-boundary phase. XRD analysis clarified that the grain-boundary phase contained crystalline compounds of cerium. The thermal conductivities of sintered specimens except for specimens containing aluminum oxide were about 40 W/m K at room temperature.  相似文献   

7.
Actinide oxides have been used as nuclear fuels in the majority of power reactors working in the world and actinide nitrides are under investigation for the fuels of the future fast neutron fission reactors developed in Forum Generation IV. Radiation damage in actinide oxides UO2, (U0.92Ce0.08)O2, and actinide nitride UN has been characterized after irradiation with swift heavy ions. Fluences up to 3 × 1013 ions/cm2 of heavy ions (Kr 740 Mev, Cd 1 GeV) available at the CIRIL/GANIL facility were used to simulate irradiation in reactors by fission products and by neutrons. The macroscopic effects of irradiation remains very weak compared with those seen in other ceramic oxides irradiated in the same conditions: practically no swelling can be measured and no change in colour can be observed on the irradiated part of a polished face of sintered disks. The point defects in irradiated actinide compounds have been characterized by optical absorption spectroscopy in the UV–Vis–NIR wavelength range. The absorption spectra before and after irradiation are compared, and unexpected stability of optical properties during irradiation is shown. This result confirms the low rate of formation of point defects in actinide oxides and actinide nitrides under irradiation. Actinide oxides and nitrides studied are >40% ionic, and oxidation state of the actinides seems to be stable during irradiation. The small amount of point defects produced by radiation (<1016 cm−2) has been identified from differences between the absorption spectrum before irradiation and the one after irradiation: point defects in oxygen or nitrogen lattices can be observed respectively in oxides and nitrides (F centres), and small amounts of U5+ would be present in all compounds.  相似文献   

8.
《等离子体科学和技术》2019,21(11):115502-76
In this paper,the influences of gas doping(O_2,N_2,Air)on the concentrations of reactive species and bactericidal effects induced by a He plasma jet are studied.Firstly,results show that gas doping causes an increase in voltage and a decrease in current compared with the pure He discharge under the same discharge power,which might be attributed to the different chemical characteristics of O_2 and N_2 and verified by the changes in the gaseous reactive species shown in the optical emission spectroscopy(OES) and Fourier transform infrared(FTIR)spectroscopy.Secondly,the concentrations of aqueous reactive oxygen species(ROS) and reactive nitrogen species(RNS) are tightly related to the addition of O_2 and N_2 into the working gas.The concentrations of aqueous NO_2~- and NO_3~- significantly increase while the concentrations of aqueous ROS decrease with the admixture of N_2.The addition of O_2 has little effect on the concentrations of NO_2~- and NO_3~- and pH values; however,the addition of O_2 increases the concentration of O_2~- and deceases the concentrations of H_2O_2 and OH.Finally,the results of bactericidal experiments demonstrate that the inactivation efficiency of the four types of plasma jets is He?+?O_2??He+AirHeHe+N_2,which is in accordance with the changing trend of the concentration of aqueous O_2~-.Simultaneously to the better understanding of the formation and removal mechanisms of reactive species in the plasma–liquid interaction,these results also prove the effectiveness of regulating the concentrations of aqueous reactive species and the bacteria inactivation effects by gas doping.  相似文献   

9.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

10.
Synthetic sapphire and yttria-stabilized zirconia single-crystals were irradiated by increasing doses of γ-radiation to study the changes of their optical properties. The optical transparency of -Al2O3 was nearly constant up to the γ-radiation dose of 150 kGy for the spectral range of 400–1000 nm, while yellowish-brown coloration of (Zr0.89Y0.11)O1.94 appeared for irradiation above 1 kGy. However, after a short-term heating in the temperature of 210oC stable discoloration of zirconia can be achieved.  相似文献   

11.
The vaporization of Li2TiO3(s) has been investigated by the mass spectrometric Knudsen effusion method. Partial pressures of Li(g), LiO(g), Li2O(g), Li3O(g) and O2(g) over Li2TiO3(s) have been obtained in the temperature range 1180–1628 K. When the vaporization of Li2TiO3(s) proceeds, the content of Li2O in the Li2TiO3(s) sample decreases. The phase of the sample is a disordered Li2TiO3 solid solution above 1486 K. The enthalpies of formation and the atomization energies for LiO(g) and Li3O(g) have been evaluated from the partial pressures to be ΔHof0(LiO, g) = 65.4 ± 17.4 kJ/mol, ΔHof0(Li3O, g) = − 207.5 ± 56.6 kJ/mol, Do0(LiO) = 340.5 ± 17.4 kJ/mol and Do0(Li3O) = 931.6 ± 56.6 kJ/mol, respectively.  相似文献   

12.
The fabrication of homogeneous (Am,Y,Zr)O2−x pellets and heterogeneous pellets, containing (Am,Y,Zr)O2−x spheres dispersed in an inert matrix, by dust-free processes has been investigated. Due to the high activity of americium, the preparatory fabrication tests and process development are being carried out using cerium analogue element. The sol gel route is used to produce highly porous Y0.15Zr0.85O2−x spheres, which are then infiltrated with a cerium nitrate solution to give (Ce,Y,Zr)O2−x. The goal (28 wt% Ce) can be achieved. Homogeneous targets with densities up to 94 %TD have been obtained.  相似文献   

13.
A knowledge of the threshold oxygen level in liquid sodium necessary for the formation of NaCrO2 in sodium-steel systems is useful in the operation of fast breeder reactors. There is considerable discrepancy in the data reported in the literature. In order to resolve this, the problem was approached from two sides. Direct measurement of oxygen potential in the Na(l)-Cr(s)-NaCrO2(s) phase field using the galvanic cell In, In2O3/YDT/Na, Cr, NaCrO2 yielded: o2 = −800847 + 147.85 T J/mol O2 (657–825 K). Knudsen cell-mass spectrometric measurements were carried out in the phase field NaCrO2(s)-Cr2O3(s)-Cr(s) to obtain the Gibbs energy of formation of NaCrO2 as: ΔGof,T(NaCrO2) = −870773 + 193.171 T J/mol (825–1025 K). The threshold oxygen levels deduced from Gof,T (NaCrO2) data were an order of magnitude lower than the directly measured values. The difference between the two sets of data as well as differing experimental observations from operating liquid sodium systems are explained on the basis of the influence of dissolved carbon.  相似文献   

14.
MeV heavy ion irradiation of hydrogenated plasma-deposited silicon nitride induces formation of the volatile molecules H2 and N2 inside the material. This type of nitride appears permeable for these molecules and they effuse at relatively low temperature. These effusing molecules are used to study the low temperature permeation in a 100 nm hydrogenated amorphous silicon layer, deposited onto the nitride. Upon irradiation of the double layer stack with 43.3 MeV Ag ions, appearance of D2 and N2 from the bottom deuterated silicon nitride layer in the vacuum does not take place up to an ion fluence of 3×1012 ions/cm2. This shows that the 100 nm plasma-deposited hydrogenated amorphous silicon top layer is initially not permeable for D2 and N2 molecules.  相似文献   

15.
The thermal conductivity, λ of a saturated vapor over UO1.96 is calculated in the temperature range 3000–6000 K. The calculation shows that the contribution to λ from the transport of reaction enthalpy dominates all other contributions. All possible reactions of the gaseous species UO3, UO2, UO, U, O, and O2 are included in the calculation. We fit the total thermal conductivity to the empirical equation λ = exp(a+ b/T+cT+dT2 + eT3), with λ in cal/(cm s K), T in kelvins, a = 268.90, B = − 3.1919 × 105, C = −8.9673 × 10−2, d = 1.2861 × 10−5, and E = −6.7917 × 10−10.  相似文献   

16.
Al-doped ZnO (AZO) is considered as an alternative to transparent conductive oxide materials. Patterning and achieving a stable surface are important challenges in the development and optimization of dry etching processes, which must be overcome for the application of AZO in various devices. Therefore, in this study, the etch rate and surface properties of an AZO thin film after plasma etching using the adaptive coupled plasma system were investigated. The fastest etch rate was achieved with a CF4/Ar ratio of 50:50 sccm. Regardless of the ratio of CF4 to Ar, the transmittance of the film in the visible region exceeded 80%. X-ray photoelectron spectroscopy analysis of the AZO thin film confirmed that metal-F bonding persists on the surface after plasma etching. It was also shown that F eliminates O vacancies. Consequently, the work function and bandgap energy increased as the ratio of CF4 increased. This study not only provides information on the effect of plasma on AZO thin film, but identifies the cause of changes in the device characteristics during device fabrication.  相似文献   

17.
In this paper the performance of 25–100 MWe Pb–Bi cooled long life fast reactors based on three type of fuels: MOX, Nitride and Metal are compared and discussed. In general MOX fuel (UO2–PuO2) has lower atomic density compared to the nitride or metal fuel, but MOX fuel has some advantages such as higher Doppler coefficient, high melting point and availability. Nitride fuel has advantages such as high density, high thermal conductivity, and high melting point, but need N-15 to avoid C-14 problems.

The results show that nitride fuel as well as MOX fuel can be used to develop 25–100 MWe (75–300 MWth) Pb–Bi cooled long life reactors without on-site fuelling. The results show that nitride fuels have more superior neutronic characteristics compared to that of MOX fuel due to higher density. However, in the large power level both fuels can be easily applied. In lower power level the MOX fuel need higher fuel volume fraction to reach the comparable target of nitride fuelled cores.  相似文献   


18.
The occurrence of O2 molecular loss from the bulk of SiO2 single layers and SiO2/Si multilayers as a result of 50 MeV Cu9+ irradiation has been investigated. This process did not take place with a significant rate, if it occurs at all. Instead both Si and O are removed from the SiO2 surface region, releasing molecular O2. If an elemental Si layer is on top in a multilayer, removal of Si and O with an appreciable rate is not observed. The irradiation creates bubbles in the SiO2/Si multilayers, which contain O2. The distinct SiO2 sublayers remain chemically intact. The bubbles deteriorate the depth resolution in elastic recoil detection.  相似文献   

19.
The vaporization of Li4TiO4 has been studied by a mass spectrometric Knudsen effusion method in the temperature range 1082–1582 K. Identified vapors are Li(g), LiO(g), Li2O(g) and Li3O(g). When the vaporization proceeds, the content of Li2O in the Li4TiO4 sample decreases and the condensed phase of the sample changes to β-Li4TiO4 plus l-Li2TiO3 below 1323 K, to β-Li4TiO4 plus h-Li2TiO3 in the range 1323–1473 K and to h-Li2TiO3 plus liquid above 1473 K. On the basis of the partial pressure data, the enthalpies of formation for β-Li4TiO4 from elements and from constituent oxides have been determined to be ΔHf,298°(β-Li4TiO4,s) = −2247.8 ± 14.3 kJ mol−1 and Δfox,298°(β-Li4TiO4, s) = −107.3 ± 14.3 kJ mol−1, respectively.  相似文献   

20.
The condition of the surfaces is of crucial importance for the deuterium permeation through materials. In this work a study of the surface constants for the adsorption (σk1) and release (σk2) of deuterium under different surface conditions on the martensitic steel DIN 1.4914 (MANET) has been carried out. The growth of an oxide surface layer (Cr2O3) of about 25–30 nm in a MANET sample, heat treated in an oxidizing environment, compared to the bare MANET that have a ‘natural' oxide of about 5 nm has provoked a reduction of both the permeation rate and the recombination coefficient (about 3 orders of magnitude). In addition, the permeation governing process has changed from diffusion-limited to surface-limited. The measurements of the permeation rate of deuterium were performed by a gas-phase permeation technique over the temperature range 574–746 K and for deuterium driving pressures in the range from 3 to 105 Pa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号