首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loss of heterozygosity (LOH) at several chromosomal loci is a common feature of the malignant progression of human tumors. In the case of chromosome 11, LOH has been well documented in several types of solid neoplasms, including gastric carcinoma, suggesting the presence of suppressor gene(s) at 11p15 and 11q22-23. Little is currently known about the molecular events occurring during the development of gastric cancer. To define the regions of chromosome 11 involved in gastric cancer progression, we used high-density polymorphic markers to screen for LOH in matched normal and tumor tissue DNA from 60 primary gastric carcinomas. We found that 21% of the tumors showed LOH simultaneously at 11p15 and 11q22-23, 41% had LOH at 11p15, and 30% had LOH at 11q22-23. We confirm that the minimal critical area of LOH for 11p15.5 is the approximately 2-Mb region between loci D11S1318 and D11S988. However, when we analyzed the pattern of LOH according to the country of origin of the patient, LOH for 11q22-23 alone was found only in cases from Italy. The minimal critical region of LOH at 11q22-23 is identical to that identified for other solid tumors, suggesting that the same putative tumor suppressor gene(s) contained within this region is involved in the pathogenesis of several common human tumors.  相似文献   

2.
Chronic myelocytic leukemia (CML) is a common neoplasm of hematopoietic pluripotent stem cells. Although the evolution from chronic phase to blast crisis (BC) in CML patients is an inevitable clinical feature, little is understood about the mechanisms responsible for the transformation. We have previously performed allelotype analysis in CML BC and have detected frequent loss of heterozygosity (LOH) on the short arm of chromosome 1. To know the common region of LOH where a putative tumor suppressor gene may reside, deletional mapping was performed using 33 microsatellite markers spanning chromosome 1 in 30 patients with CML BC (21 myeloid and 9 lymphoid). DNA was extracted from slides of bone marrow smears or from bone marrow mononuclear cells. In each patient, DNA from chronic phase was analyzed alongside DNA from either their BC or accelerated phase. Allelic loss on 1p was observed in 14 of the 30 individuals (47%): 10 of the 21 myeloid and 4 of the 9 lymphoid BC cases. Serial cytogenetic information was available in 10 cases with LOH on 1p; interestingly, deletions in this region were not detected. Two samples showed LOH at all informative loci on 1p, whereas the other 12 samples showed LOH on at least one but not all loci on 1p. The common region of LOH resided proximal to D1S508 and distal to D1S507 (1p36). Our results suggest that a tumor suppressor gene that frequently plays an important role in the evolution to BC resides on 1p36 in CML.  相似文献   

3.
The short area of chromosome 17 is a frequent target for deletions in human tumors, including breast cancer. We have investigated by restriction fragment polymorphism analysis the pattern of loss of heterozygosity (LOH) at four loci on 17p13.1-17pter in a panel of 110 primary human breast carcinomas. A copy of the p53 gene was lost in 23% of the informative cases. Point mutations in the p53 gene were statistically associated with LOH at the same locus (p = 0.003) but not at other loci on 17p13.3-17pter. A second region bordered by the loci D17S5/D17S28 (17p13.3) and D17S34 (17pter) is also affected by LOH, independent of point mutations in the p53 gene. We propose the presence of a second tumor suppressor gene within this region. In support of this hypothesis is the significant association (p = 0.005) between LOH at the D17S5/D17S28, but not at the TP53 or D17S34 loci, and tumors having a high S-phase index.  相似文献   

4.
An allelotype covering all autosomes was constructed for the embryonal form of childhood rhabdomyosarcoma (ERMS) in order to identify regions encompassing tumorsuppressor genes (TSG) involved in ERMS. Thusfar most studies were focussed on chromosome 11p15.5, which frequently shows loss of heterozygozity (LOH) in embryonal tumors like RMS and Wilms' tumor (WT). In this study we show that, besides LOH of chromosome 11p15.5 (72%), LOH of chromosome 16q was present in 54% of the tumors analysed. Delineation of these two regions shows that the smallest region of overlap (SRO) for chromosome 11 was between D11S988 and D11S922. This region, estimated to be 7 cM and 3-5 Mb, is also the location of the putative Wilms' tumor WT2 TSG. It contains several genes including IGF2 and potential tumorsuppressor genes like H19 and p57kip2, which might contribute to the carcinogenesis of RMS. Analysis of chromosome 16q LOH defined the SRO between D16S752 and D16S413. LOH of chromosome 16 is also found in other tumors, including WT. Our data suggest that genes involved in the development of RMS and WT may not only be similar for chromosome 11 but also for chromosome 16.  相似文献   

5.
Loss of heterozygosity (LOH) on 3p is frequent in human renal cell carcinomas, lung cancers, and breast cancers. To define the region(s) on 3p that harbor presumptive tumor suppressor gene(s) for breast cancer, we examined 196 primary breast tumors for their patterns of LOH at 22 microsatellite marker loci distributed along this chromosome arm. Allelic loss at one or more loci was observed in 101 (52%) of these tumors. Detailed deletion mapping identified two distinct commonly deleted regions; one was localized to a 2-cM interval flanked by D3S1547 and D3S1295 at 3p14.3-21.1, and the other to a 5-cM interval flanked by D3S1286 and D3S1585 at 3p24.3-25.1. The FHIT gene lies in the vicinity of the proximal commonly deleted region. Attempts to correlate LOH on 3p to clinicopathological parameters detected an association with the absence of the progesterone receptor (P = 0.0096). The results suggest that inactivation of unidentified tumor suppressor genes on 3p plays a role in the mechanism whereby hormone dependency is lost in the course of breast carcinogenesis.  相似文献   

6.
Epithelial ovarian tumors frequently display deletions on the short arm of chromosome 3 suggesting the existence of tumor suppressor genes within the deleted regions. We have recently established a primary tissue culture system as a model to investigate the genetic events associated with ovarian cancer. The frequencies of loss of heterozygosity (LOH) at 16 loci representative of chromosome 3p in 33 tumor biopsies and 47 ovarian primary cultures derived from unselected ovarian cancers were examined. This repertoire also included benign and borderline tumors as well as malignant ovarian ascites. LOH was observed in 25 (31%) samples for at least one marker: 21 of 58 malignant, two of 12 borderline and two of 10 benign specimens. Chromosome 3p loss was not restricted to ovarian tumors of high grade and stage. LOH was observed in both cultured and non cultured tumors and ascites. A spontaneously immortalized cell line derived from a malignant ovarian ascites, OV-90, displayed LOH of the majority of markers suggesting loss of one homolog of chromosome 3p. The pattern of deletion displayed by these 25 samples enabled the determination of at least two distinct regions of overlapping deletions on chromosome 3p extending from D3S1270 to D3S1597 and from D3S1293 to D3S1283. In addition, a region proximal to D3S1300 was deleted in a subset of samples. Although loss of loci overlapping these three regions (Regions I, II and III) were observed in malignant and benign tumors, in borderline tumors loss was observed of markers representative of Region III only. While RARbeta is presently included in Region II, the minimal regions of deletion exclude VHL, TGFBR2, PTPase(gamma) and FHIT as candidate tumor suppressors in ovarian tumorigenesis.  相似文献   

7.
Detailed deletion mapping of chromosome 6q has shown that the highest percentage of loss of heterozygosity (LOH) is located at 6q25-q27 and suggested that an ovarian cancer associated tumor suppressor gene may reside in this region. To further define the smallest region of common loss, we used 12 tandem repeat markers spanning a region no more than 18 cM, located between 6q25.1 and 6q26, to examine allelic loss in 54 fresh and paraffin embedded invasive ovarian epithelial tumor tissues. Loss of heterozygosity was observed more frequently at the loci defined by marker D6S473 (14 of 32 informative cases, 44%) and marker D6S448 (17 of 40 informative cases, 43%). Detailed mapping of chromosome 6q25-q26 in these tumor samples identified a 4 cM minimal region of LOH between markers D6S473 and D6S448 (6q25.1-q25.2). Loss of heterozygosity at D6S473 correlated significantly both with serous versus non-serous ovarian tumors (P=0.040) and with high grade versus low grade specimens (P=0.023). The results suggest that a 4 cM deletion unit located at 6q25.1-q25.2 may contain the putative tumor suppressor gene which may play a role in the development and progression of human invasive epithelial ovarian carcinomas (IEOC).  相似文献   

8.
Loss of heterozygosity (LOH) affecting chromosome 9p has been shown to occur frequently in head and neck cancer, glioma, mesothelioma, melanoma, lung cancer, and numerous other tumor types. Chromosome 9p is therefore presumed to contain a tumor suppressor gene or genes. Since esophageal cancer shares characteristics with some of the above tumor types, we performed a detailed examination of 60 patients with squamous cell carcinoma or adenocarcinoma of the esophagus for LOH at loci D9S162, IFNA, D9S171, D9S126, D9S104, D9S165, and D9S163. Multiplex polymerase chain reactions were performed with the inclusion of one radiolabeled nucleotide, and products were electrophoresed on denaturing polyacrylamide gels. Thirty-six of the 60 patients (60%) exhibited LOH at one or more loci on chromosome 9p. Eight of 17 patients (47%) with adenocarcinoma manifested LOH, while 28 of 43 (65%) with squamous cell carcinoma showed LOH. LOH was most frequent at loci D9S171 (19 of 23, or 83%) and D9S165 (24 of 32, or 75%). These data support the hypothesis that a tumor suppressor gene or genes located on this portion of chromosome 9p exert(s) an effect on esophageal cancer development.  相似文献   

9.
The present study was undertaken to analyse the loss of heterozygosity (LOH) of the three genes, BRCA1, BRCA2 and ATM, and their correlation to clinicopathological parameters in sporadic breast cancer. We studied 59 sets of invasive ductal carcinoma, compared to matched normal control DNA. Microsatellite markers intragenic to BRCA1 (D17S1323, D17S1322, D17S855), BRCA2 (D13S1699, D13S1701, D13S1695) and ATM (D11S2179) were simultaneously used. In addition, one marker telomeric to BRCA2 (D13S1694) and four markers flanking ATM were analysed (D11S1816, D11S1819, D11S1294, D11S1818). Thirty-one per cent of the informative cases showed loss of heterozygosity for the BRCA1 gene, 22.8% for BRCA2 gene and 40% for ATM. LOH of BRCA1 correlated with high grade tumors (p=0.0005) and negative hormone receptors (p=0.01). LOH of ATM correlated with higher grade (p=0.03) and a younger age at diagnosis (p=0.03) in our set of tumors. No correlations were detected between BRCA2 LOH and any of the analysed clinicopathological parameters. However, a correlation was detected between allelic loss of the D13S1694 marker, telomeric to BRCA2, and larger tumor sizes and negative estrogen receptors, favoring the hypothesis of the presence of another putative tumor suppressor gene, telomeric to BRCA2, in the 13q12-q14 region. Only 11 tumors had LOH at more than one of the three genes, most of them (6/11) associated LOH of BRCA1 and ATM. One tumor only combined loss of the three genes BRCA1, BRCA2 and ATM.  相似文献   

10.
Loss of heterozygosity (LOH) on chromosome 9 is the most frequent genetic alteration in bladder cancer identified to date, suggesting the presence of key gene(s) for this pathology. In this study, we examined 44 bladder tumors and 21 normal bladder samples for LOH on both arms of chromosome 9. Sixteen microsatellite markers, 12 on the short arm (encompassing 9p21-22) and 4 on the long arm (encompassing 9q33-34), were chosen for their highly frequent alterations in bladder cancer. LOH for at least one marker was identified in 42 tumor samples (95.5%), and 14 tumors (32%) displayed LOH for all informative tested markers. Detailed analysis showed that 2 markers on chromosome 9p (D9S157 and D9S156) had the highest frequencies of allelic loss (about 70%), independent of tumor grade and stage. The same study was performed on the 21 normal bladder mucosa samples: 50% of informative cases presented a single specific LOH at the D9S156 locus. Normal samples showing LOH at this locus were therefore screened with 3 novel microsatellite markers in the 810-kb region incorporating D9S156. Using this marker, we found no further heterozygous loss in this region. This result allows different interpretations of the D9S156 loss in normal bladder mucosa, and suggests that D9S156 may be more an indicator of bladder epithelium impairment than a tumor-initiation marker. Similarly, this unexpected result calls in question the interpretation of LOH studies.  相似文献   

11.
The presence of a tumour suppressor gene on chromosome 7q is indicated by cytogenetic, loss of heterozygosity (LOH) and chromosome transfer studies. One candidate gene in this region is Plasminogen Activator Inhibitor-1 (PAI-1). The PAI-1 gene product is involved in proteolysis and may therefore influence tumour spread and invasion. We have analysed a series of 139 ovarian epithelial tumours at four loci in the region 7q21-q31 which includes the PAI-1 gene. The highest rates of loss were found in malignant tumours (FIGO stages I-IV) at markers D7S471 (38%, 20/52 informative cases) and D7S522 (34%, 15/44). No loss was seen in benign tumours and only one out of 27 (4%) informative LMP tumours demonstrated LOH. The smallest region of overlap (SRO) lies between D7S471 and PAI-1. We also identified a rearrangement in one tumour in the PAI-1 gene, suggesting that this may be the inactivated gene in this region. In addition LOH at the more distal marker, D7S522, which lies outside the SRO, shows significant association with stage (P=0.0343) and with LOH on chromosome 13 (P=0.0024). This is in contrast to all other markers examined. These data suggest the presence of two critical regions on 7q which may be important in subsets of epithelial ovarian tumours.  相似文献   

12.
We extend the evaluation of allelic loss patterns on chromosome 17 to papillary serous carcinoma of the peritoneum (PSCP) which is histologically identical to papillary serous ovarian carcinoma (PSOC). DNA was obtained from 11 archival cases of PSCP, with 1-11 tumor sites per case. Using ten loci spanning chromosome 17, loss of heterozygosity (LOH) was identified in all 11 cases (100%). Furthermore, 75-100% of informative cases exhibited LOH at the loci p53, D17S1322 (intragenic to the tumor suppressor gene BRCA1), D17S1327 and MPO. PSCP cases exhibit a higher rate of LOH at most loci when compared with PSOC. Alternating allelic loss at different tumor sites was identified in three cases supporting a multifocal origin of PSCP. Microsatellite instability (MI) is an uncommon event which was identified in four cases. These data implicate chromosome 17 as a potential location of genetic events important in the pathogenesis of PSCP as well as ovarian cancer.  相似文献   

13.
Cytogenetic and molecular analysis of DNA sequences with highly polymorphic microsatellite markers have implicated allele loss in several chromosomal regions including 3p, 6p, 6q, 8p, 9p, 9q, 11p and 14q in the pathogenesis of sporadic renal cell carcinomas (RCCs). Deletions involving the long arm of chromosome 7 have not been described in RCCs although they have been seen in several other tumor types. However, there have been no detailed analysis of loss of heterozygosity (LOH) of 7q sequences in sporadic RCCs. We therefore studied LOH for DNA sequences on 7q with 10 highly polymorphic markers in 92 matched normal/tumor samples representing sporadic RCCs including papillary, nonpapillary, and oncocytomas in order to determine whether allelic loss could be detected in a tumor type with no visible 7q rearrangements at the cytogenetic level. We found chromosome 7q allele loss in 59 of 92 cases (64%) involving one, two, or more microsatellite markers. The most common allele loss included loci D7S522 (24%) and D7S649 (30%) at 7q31.1-31.2, a region that contains one of the common fragile sites, FRA7G. By comparative multiplex PCR analysis, we detected a homozygous deletion of one marker in the 7q 31.1-31.2 region in one tumor, RC21. These results support the idea that a tumor suppressor gene in 7q31 is involved in the pathogenesis of sporadic renal cell carcinomas.  相似文献   

14.
Hepatocellular carcinoma (HCC) frequently shows a loss of heterozygosity (LOH) on chromosome 4q. In order to define the commonly affected region on chromosome 4q for further positional cloning of the putative tumor suppressor gene, we carried out allelic imbalance (AI) studies in 41 HCCs using a panel of 43 microsatellite markers. Thirty-four cases (82.9%) showed AI at one or more loci. Detailed deletion mapping identified 7 independent, frequently deleted regions on this chromosome arm. These were the (1) D4S1615 locus, (2) D4S1598 locus, (3) D4S620 locus, (4) D4S1566 and D4S2979 loci, (5) D4S1617 and D4S1545 loci, (6)D4S1537 locus; and (7) from the D4S2920 to D4S2954 locus. Among these 7 frequently deleted regions, 5 were associated with tumor differentiation. Our results suggest that several putative tumor suppressor genes may be present on chromosome 4q and that the AI of chromosome 4q may play a role in the aggressive progression of HCC.  相似文献   

15.
Loss of heterozygosity (LOH) on chromosome 11 is frequently altered in various epithelial cancers. The present study was designed to investigate LOH on chromosome 11 in microdissected samples of normal prostatic epithelium and invasive carcinoma from the same patients. For this purpose, DNA was extracted from the microdissected normal and tumor cells of 38 prostate cancers, amplified by polymerase chain reaction PCR and analyzed for LOH on chromosome 11 using 9 different polymorphic DNA markers (D11S1307, D11S989, D11S1313, D11S898, D11S940, D11S1818, D11S924, D11S1336 and D11S912). LOH on chromosome 11 was identified in 30 of 38 cases (78%) with at least one marker. Four distinct regions of loss detected were: 1) at 11p15, at loci between D11S1307 and D11S989; 2) at 11p12, on locus D11S131 (11p12); 3) at 11q22, on loci D11S898, D11S940 and D11S1818; and 4) at 11q23-24, on loci between D11S1336 and D11S912. We found 25% of the tumors with LOH at 11p15; 39% had LOH at 11p12; 66% had LOH at 11q22; and 47% had LOH at 11q23-24. These deletions at 11p15, 11p12, 11q22 and 11q23-24 loci were not related to the stage or grade of the tumor.  相似文献   

16.
Recent cytogenetic and molecular studies with highly polymorphic microsatellite markers have implicated allele loss involving chromosome 4 in several human cancers, which suggests the presence of multiple tumor suppressor gene (TSG) loci. However, there has been no detailed analysis of loss of heterozygosity (LOH) on chromosome 4 in oral squamous cell carcinoma (OSCC). To determine the location of a putative TSG associated with OSCC on chromosome 4, polymerase chain reaction (PCR) analysis of microsatellite polymorphisms corresponding to 17 loci was performed to screen 32 patients with OSCC. LOH was observed in the majority of the tumors (75%) in at least one of the loci. The loci on the long arm exhibited a significantly higher frequency of deletions (66%) than those of the short arm (25%). Among the loci tested, frequent LOH was centered at D4S1573 on 4q25, which represents a region of about 4 centimorgans (cM). However, no commonly deleted regions were found on the short arm of the chromosome. We detected microsatellite instability (MI) in 31% of the cases. MI was also observed more frequently on the long arm (28%) than the short arm (6%). Thus, our data indicate that alterations of chromosome 4 regions, especially the long arm, are associated with OSCC tumorigenesis and that the 4q25 region may harbor at least one putative TSG.  相似文献   

17.
Glioblastoma multiforme (GBM) is the most malignant glial brain tumor in humans. The fact that deleted copies of chromosome 10 are observed frequently in primary GBM tumors supports the hypothesis that one or more tumor suppressor genes located on chromosome 10 occupy crucial growth control checkpoints for glial cells. Deletion mapping in primary GBM tumors using the loss of heterozygosity (LOH) test has implicated the 10q24-10qter region as one possible site for a gene. We report here on the molecular cytogenetic analysis of chromosome 10 abnormalities in a human GBM cell line, JBSA. LOH testing showed that JBSA cells were hemizygous for chromosome 10. Molecular cytogenetic analysis showed that the undeleted homologue was involved in a reciprocal translocation t(7;10)(p21;q22). The translocation breakpoint on chromosome 10 lay within band q22 between D10S19 and D10S4. The fact that JBSA cells lack one homologue of chromosome 10 and carry a translocation breakpoint on the remaining one, proximal to the smallest region of overlap reported in primary tumor deletions, suggests that 10q22 may be another possible site for a tumor suppressor gene involved in GBM.  相似文献   

18.
We analysed 42 differentiated thyroid tumors including 15 follicular adenomas (FA), 13 papillary thyroid cancers (PTC) and 14 follicular thyroid carcinomas (FTC) with 13 microsatellite markers specific for the long arm of human chromosome 7 within 7q31; this region is deleted frequently in several other tumor types. Overall, 20 of the 42 samples analysed (48%) displayed LOH with one or more of the markers tested. LOH was detected most frequently (78%) in FTC, the most malignant of the thyroid tumors. A smallest common deleted region (SCDR) was defined in this tumor type flanked by markers D7S480 and D7S490. This SCDR is distinct from D7S522, the most commonly deleted locus in many other tumors, which was deleted in only one FTC. D7S522 did show LOH in two of six informative PTCs. None of the PTC and only two of the FAs showed LOH in the FTC SCDR. Since FA is considered a premalignant stage of FTC, our results suggest that inactivation of a putative tumor suppressor at 7q31.2 may be acquired during adenoma to carcinoma progression. The absence of LOH at this locus amongst PTC suggests that inactivation of this tumor suppressor is specific for FTC. In conclusion, LOH at 7q31 is a frequent event in differentiated thyroid cancer, and we have defined a 2 cM SCDR specific for FTC.  相似文献   

19.
BACKGROUND: Development of uterine cervical cancer is preceded by preneoplastic proliferative changes in the cervical epithelium called "intra-epithelial neoplasia" or "dysplasia." The genetic basis of the origin and progression of such preneoplastic lesions is not known. By analysis of carcinomas for loss of constitutional heterozygosity (LOH), we have previously shown a high frequency of allelic loss in the short arm of chromosome 5 (5p), suggesting loss of a candidate tumor suppressor gene located in 5p and associated with the development of this tumor. PURPOSE: To further understand the role of genetic alterations that affect 5p in cervical carcinogenesis, we evaluated the status of microsatellite polymorphisms at five loci mapped to 5p14-ter in precancerous and cancerous lesions. METHODS: Biopsy specimens from two groups of patients were analyzed for genetic alterations affecting 5p. One group comprised 14 cases of precancerous lesions (i.e., dysplasias) and five cases of carcinoma in situ (CIS); the second group comprised 46 previously untreated patients with invasive carcinoma. Tumor and normal DNAs were analyzed by polymerase chain reaction for genetic losses and instability at five polymorphic microsatellite loci (D5S392, D5S406, D5S208, D5S117, and D5S432) mapped to 5p. RESULTS: LOH was observed in 25 (55.6%) of 45 informative invasive carcinomas, one (20%) of five cases of CIS, and three (21%) of 14 precancerous lesions. Among the loci tested, D5S406 (5p15.1-15.2) exhibited LOH in 12 (48%) of 25 invasive carcinomas, one (33%) of three cases of CIS, and three (60%) of five precancerous lesions, suggesting this to be the site in 5p of the novel candidate tumor suppressor gene. In addition, replication error-type alterations were noted in the 5p14-ter region in six (13%) of 46 invasive carcinomas, two (40%) of five cases of CIS, and three (21%) of 14 precancerous lesions. Instability affected D5S406 in eight (66.7%) of 12 instances that showed microsatellite instability. CONCLUSION: These observations suggest that allelic loss and microsatellite instability in the region of D5S406 may play a role early in the development of cervical carcinoma and identify the site of a candidate tumor suppressor gene. These genetic markers (allelic loss and microsatellite instability) may also define CIS and precancerous lesions at high risk for progression to invasive cancer. IMPLICATIONS: The future molecular cloning of the candidate tumor suppressor gene at 5p15.1-15.2 may provide new insights into the genetic mechanisms of cervical carcinogenesis. Analysis and clinical follow-up of a large cohort of prospectively ascertained cases of precancerous lesions would help to validate the usefulness of these markers.  相似文献   

20.
We have previously described in tuberous sclerosis (TSC) hamartomas the phenomenon of loss of heterozygosity (LOH) for DNA markers in the region of both the TSC2 gene on chromosome 16p13.3 and the TSC1 gene on 9q34. We now describe the spectrum of LOH in 51 TSC hamartomas from 34 cases of TSC. DNA was extracted from leucocytes or normal paraffin embedded tissue, and from frozen paraffin embedded hamartoma tissue from the same patient. The samples were analysed for 11 markers spanning the TSC1 locus and nine markers spanning the TSC2 locus. Twenty-one of 51 hamartomas showed LOH (41%). There was significantly more LOH on 16p13.3, with 16 hamartomas showing LOH around TSC2, and five in the vicinity of TSC1. No hamartoma showed LOH for markers around both loci. All the areas of LOH on chromosome 9 were large, but the smallest region of overlap lay between the markers D9S149 and D9S114, providing independent evidence for the localisation of the TSC1 gene. These data show that LOH is a common finding in a wide range of hamartomas, affecting the same TSC locus in different lesions from the same patient but not affecting both loci. These data support the hypothesis that both the TSC genes act as tumour suppressors and that the manifestations of TSC in patients with germline TSC mutations rise from "second hit" somatic mutations inactivating the remaining normal copy of the TSC gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号