首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
Nonlinear vibration, nonlinear bending and postbuckling analyses are presented for a sandwich plate with FGM face sheets resting on an elastic foundation in thermal environments. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equation of the plate that includes plate-foundation interaction is solved by a two-step perturbation technique. The thermal effects are also included and the material properties of both FGM face sheets and homogeneous core layer are assumed to be temperature-dependent. The numerical results reveal that the foundation stiffness and temperature rise have a significant effect on the natural frequency, buckling load, postbuckling and nonlinear bending behaviors of sandwich plates. The results also reveal that the core-to-face sheet thickness ratio and the volume fraction distribution of FGM face sheets have a significant effect on the natural frequency, buckling load and postbuckling behavior of the sandwich plate, whereas this effect is less pronounced for the nonlinear bending, and is marginal for the nonlinear to linear frequency ratios of the same sandwich plate.  相似文献   

2.
A nonlinear bending analysis is presented for a simply supported, functionally graded plate resting on an elastic foundation of Pasternak-type. The plate is exposed to elevated temperature and is subjected to a transverse uniform or sinusoidal load combined with initial compressive edge loads. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher-order shear deformation plate theory and general von Kármán-type equation that includes the plate-foundation interaction and thermal effects. A two step perturbation technique is employed to determine the load–deflection and load–bending moment curves. The numerical illustrations concern nonlinear bending response of functional graded plates with two constituent materials resting on Pasternak elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The results reveal that the characteristics of nonlinear bending are significantly influenced by foundation stiffness, temperature rise, transverse shear deformation, the character of in-plane boundary conditions and the amount of initial compressive load. In contrast, the effect of volume fraction index N becomes weaker when the plate is supported by an elastic foundation.  相似文献   

3.
The small- and large-amplitude vibrations are presented for a functionally graded rectangular plate resting on a two-parameter (Pasternak-type) elastic foundation in thermal environments. Two kinds of micromechanics models, namely, Voigt (V) model and Mori–Tanaka (M–T) model, are considered. The motion equations are based on a higher order shear deformation plate theory that includes plate-foundation interaction. The thermal effects are also included and the material properties of functionally graded materials (FGMs) are assumed to be temperature-dependent. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The accuracy of Voigt and Mori–Tanaka models for the vibration analysis of FGM plates is investigated. The comparison studies reveal that the difference between these two models is much less compared to the difference caused by different solution methodologies and plate theories. The results show that the difference of the fundamental frequencies between M–T and V solutions is very small, and the difference of the nonlinear to linear frequency ratios between M–T and V solutions may be negligible.  相似文献   

4.
In this study, nonlinear vibration and instability of embedded temperature-dependent cylindrical shell conveying viscous fluid resting on temperature-dependent orthotropic Pasternak medium are investigated. The equivalent material properties of nanocomposites are estimated using rule of mixture. Both cases of uniform distribution and functionally graded distribution patterns of reinforcements are considered. Based on orthotropic Mindlin shell theory, the governing equations are derived. Generalized differential quadrature method is applied for obtaining the frequency and critical fluid velocity of a system. The effects of different parameters, such as distribution type of single-walled carbon nanotubes (SWCNTs), volume fractions of SWCNTs, and Pasternak medium are discussed.  相似文献   

5.
An analysis on the nonlinear dynamics of a clamped-clamped FGM circular cylindrical shell subjected to an external excitation and uniform temperature change is presented in this paper. Material properties of the constituents are assumed to be temperature-independent and the effective properties of FGM cylindrical shell are graded in thickness direction according to a simple power law function in terms of the volume fractions. Based on the first-order shear deformation shell theory and von Karman type nonlinear strain-displacement relationship, the nonlinear governing equations of motion are derived by using Hamilton’s principle. Galerkin’s method is then utilized to discretize the governing partial equations to a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms under combined external excitations. Numerical results including the bifurcations, waveform, phase plots and Poincare maps are presented for clamped-clamped FGM cylindrical shells showing the influences of material gradient index, the thickness and the external loading on the nonlinear dynamics.  相似文献   

6.
A postbuckling analysis is presented for a functionally graded cylindrical shell with piezoelectric actuators subjected to lateral or hydrostatic pressure combined with electric loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling is extended to the case of FGM hybrid laminated cylindrical shells of finite length. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of pressure-loaded, perfect and imperfect, FGM cylindrical shells with fully covered piezoelectric actuators under different sets of thermal and electric loading conditions. The results reveal that temperature dependency, temperature change and volume fraction distribution have a significant effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells. In contrast, the control voltage only has a very small effect on the buckling pressure and postbuckling behavior of FGM hybrid cylindrical shells.  相似文献   

7.
In this study, the mechanical buckling of functionally graded material cylindrical shell that is embedded in an outer elastic medium and subjected to combined axial and radial compressive loads is investigated. The material properties are assumed to vary smoothly through the shell thickness according to a power law distribution of the volume fraction of constituent materials. Theoretical formulations are presented based on a higher-order shear deformation shell theory (HSDT) considering the transverse shear strains. Using the nonlinear strain–displacement relations of FGMs cylindrical shells, the governing equations are derived. The elastic foundation is modelled by two parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The boundary condition is considered to be simply-supported. The novelty of the present work is to achieve the closed-form solutions for the critical mechanical buckling loads of the FGM cylindrical shells surrounded by elastic medium. The effects of shell geometry, the volume fraction exponent, and the foundation parameters on the critical buckling load are investigated. The numerical results reveal that the elastic foundation has significant effect on the critical buckling load.  相似文献   

8.
The static, dynamic, and free vibration analysis of a functionally graded material (FGM) doubly curved panel are investigated analytically in the present paper. The FGM Panel is originated from a rectangular planform and its principle curvatures are considered to be constant. All mechanical properties of the FGM panel are assumed to vary continuously through the thickness according to a power law formulation except Poisson’s ratio, which is kept constant. A Pasternak-type elastic foundation containing damping effects is considered to be in contact with the panel during deformation. The elastic foundation reacts in both compression and tension. Equations of motion are established based on the first order shear deformation and the modified Sanders shell theories. Following the Navier type solution, the established equations are reduced to time-dependent ordinary differential equations. Using the Laplace transform, the time-dependency of the problem is eliminated. The solutions are obtained analytically in the Laplace domain and then are inverted to the time domain following an analytical procedure. Finally, the analytical results are verified with those reported in the literature.  相似文献   

9.
The free vibration analysis of rotating functionally graded (FG) cylindrical shells subjected to thermal environment is investigated based on the first order shear deformation theory (FSDT) of shells. The formulation includes the centrifugal and Coriolis forces due to rotation of the shell. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The equations of motion and the related boundary conditions are derived using Hamilton’s principle. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to discretize the thermoelastic equilibrium equations and the equations of motion. The convergence behavior of the method is demonstrated and comparison studies with the available solutions in the literature are performed. Finally, the effects of angular velocity, Coriolis acceleration, temperature dependence of material properties, material property graded index and geometrical parameters on the frequency parameters of the FG cylindrical shells with different boundary conditions are investigated.  相似文献   

10.
A nonlinear analysis is presented for FGM cylindrical panels resting on elastic foundations subjected to the combined actions of uniform lateral pressure and compressive edge loads in thermal environments. The two cases of postbuckling of initially pressurized FGM cylindrical panels and of nonlinear bending of initially compressed cylindrical panels are considered. Heat conduction and temperature-dependent material properties are both taken into account. Material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction based on Mori-Tanaka micromechanics model. The formulations are based on a higher order shear deformation theory and von Kármán strain displacement relationships. The panel-foundation interaction and thermal effects are also included. The governing equations are solved by a singular perturbation technique along with a two-step perturbation approach. The numerical illustrations concern the postbuckling behavior and the nonlinear bending response of FGM cylindrical panels with two constituent materials resting on Pasternak elastic foundations. The effects of volume fraction index, temperature variation, foundation stiffness as well as initial stress on the postbuckling behavior and the nonlinear bending response of FGM cylindrical panels are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号