首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G′ values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G′ and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γc), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γc. The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications.  相似文献   

2.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

3.
The effects of starch particle size and leached amylose on the viscosity of rice starch dispersions and changes of short-range structure and amylose content in starch granules of different rice varieties during heating were investigated. It was found that starch granule swelling increased rice starch dispersion viscosity during heating. The viscosities of the starch dispersions during heating were principally dependent on granular volume fraction and independent of starch variety. A distinct correlation between the amount of leached amylose and swelling of starch granules was also found. High initial amylose concentrations in starch granules reduced swelling during heating, thereby reducing rice dispersion viscosities. Fourier-transform IR spectroscopy indicated that the loss of short-range order was significant when the temperature reached the pasting onset temperature. The short-range order of waxy and medium grain rice starches was higher than that of long grain rice starches before gelatinization. The loss of order of waxy and medium grain rice starches was greater than that of long grain rice starches during heating, which was due to the presence of amylose, restraining the swelling and disruption of starch granules during heating.  相似文献   

4.
L. N. Lai    A. A. Karim    M. H. Norziah    C. C. Seow 《Journal of food science》2004,69(4):FCT249-FCT25
ABSTRACT: Using a Rapid Visco Analyzer (RVA), it was revealed that 2 alkalizing agents (Na2CO3 and NaOH) had a far larger effect on pasting properties of nonwaxy starches (wheat, corn, rice) compared with their effect on waxy starches (waxy corn and waxy rice). It was hypothesized that the alkalizing agents have a greater propensity to attack the amorphous regions of the nonwaxy starch granules, thereby causing increased leaching of amylose molecules and possibly also some hydrolysis of starch chains. As a result, the RVA pasting profile of a nonwaxy starch, in the presence of alkali, was drastically altered to one that more closely resembled that of its waxy counterpart without added alkali.  相似文献   

5.
The physicochemical and pasting properties of high amylose rice starches isolated using alkaline steeping method from different Korean rice cultivars, Goamy2 and Goamy, and from imported Thai rice were examined. The protein and lipid contents of the Goamy2 starch were higher than those of the other two starches. The amylose and total dietary fiber contents were ranged from 31.4 to 36.8% and from 6.3 to 8.6%, respectively. Total dietary fiber was positively correlated to amylose content. Water binding capacity was higher in the Goamy2 starch (172.2%) than in the Goamy and Thai rice starches (112.7–115.6%). The swelling power of the Goamy2 starch showed lower values, but its value at 95°C was similar to others because of its rapid increment at 85°C. The granular size of Goamy2 starch was widely distributed compared to those of others. The Goamy2 starch showed a high initial pasting temperature (92.0°C) and low breakdown and setback viscosities. The Goamy and Thai rice starch granules were polygonal‐shaped with A‐type crystals, whereas the Goamy2 starch granules were round‐shaped with B‐type crystals. Goamy and Goamy2 starches showed a single endotherm at 60.8 and 76.0°C for peak temperature and 10.0 and 11.5 J/g for gelatinization enthalpies, respectively. The Thai rice starch presented an endotherm with a shoulder peak at 68.3°C (75.3°C for the main peak) and a gelatinization enthalpy of 12.4 J/g.  相似文献   

6.
Starches from two cultivars (Bola and Dik) of innala tubers (Solenostemon rotundifolius) grown in the same location and under identical environmental conditions in Sri Lanka was isolated and some of the characteristics determined. The yield of starch from both cultivars was 16.0% on initial tuber weight. The shape of the granules in both cultivars was dome shaped and hemispherical with 4–5 slightly concaved facets. Pores were found randomly distributed over the surface of both starch granules. The amylopectin branch chain length distribution was nearly similar for both starches. However, the starches differed with respect to granular swelling, amylose leaching, susceptibility towards acid and enzyme hydrolysis, gelatinization characteristics, pasting properties and retrogradation kinetics. The results showed that differences in amylose content, lipid complexed amylose chains, relative crystallinity and extent of interaction between amylose chains in the amorphous regions of the granule had a substantial impact on the observed differences in physicochemical properties.  相似文献   

7.
Starch gelatinization is important in food processing and industrial use. Granule swelling and gelatinization temperature of 11 starches from different plants were investigated in situ using hot stage microscopy during heating. The amylose content, swelling power, pasting temperature and thermal property of these starches were also measured. The results showed that hot stage microscopy was suitable for measuring granule swelling and the gelatinization temperature of starch during heating. The sectional area swelling percentage of starch granules measured using hot stage microscopy was significantly positively correlated with the swelling power. The gelatinization temperature measured using hot stage microscopy was significantly positively correlated with the pasting temperature and with the thermal property for all 11 starches. For rice starches with the same crystallinity and similar size, the gelatinization temperature was negatively correlated with the amylose content and positively correlated with the swelling power and the sectional area swelling percentage at 95°C.  相似文献   

8.
The effect of white sauce ingredients and increased cooking time at 90 °C on the degree of gelatinization of corn, waxy corn, rice, potato and modified waxy corn starches was studied. The changes in pasting properties, linear viscoelastic properties, and microstructure were determined. In all the native starches in water, a longer cooking time at 90 °C caused greater starch granule swelling and more leaching of solubilized starch polymers into the intergranular space. These effects were more noticeable in the waxy corn and potato starches. The potato starch was the most affected, with complete disruption of the starch granules after 300 s at 90 °C. The microstructural changes which transformed a system characterized by starch granules dispersed in a continuous phase (amylose/amylopectin matrix) into a system with an increase in the continuous phase and a decrease in starch granules were associated with a decrease in system viscoelasticity. The elastic moduli were higher in the sauce than in the starch in water system. However, with the exception of potato starch, the white sauce showed lower viscoelasticity than the starch in water system. The white sauce ingredients decreased the effect of cooking time on the starch gelatinization process, particularly in potato starch.  相似文献   

9.
Chemical and physical properties of kiwifruit (Actinidia deliciosa var. ‘Hayward’) starch were studied. Kiwifruit starch granules were compound, irregular or dome‐shaped with diameters predominantly 4–5 µm or 7–9 µm. Kiwifruit starch exhibited B‐type X‐ray diffraction pattern, an apparent amylose content of 43.1% and absolute amylose content of 18.8%. Kiwifruit amylopectins, relative to other starches, had low weight‐average molecular weight (7.4×107), and gyration radius (200 nm). Average amylopectin branch chain‐length was long (DP 28.6). Onset and peak gelatinization temperatures were 68.9°C and 73.0°C, respectively, and gelatinization enthalpy was high (18.5 J/g). Amylose‐lipid thermal transition was observed. Starch retrograded for 7 d at 4°C had a very high peak melting temperature (60.7°C). Peak (250 RVU), final (238 RVU) and setback (94 RVU) viscosity of 8% kiwifruit starch paste was high relative to other starches and pasting temperature (69.7°C) was marginally higher than onset gelatinization temperature. High paste viscosities and low pasting temperature could give kiwifruit starch some advantages over many cereal starches.  相似文献   

10.
《Food chemistry》2005,93(1):9-15
The starch properties of four Japanese wheat varieties/breeding lines suitable for both bread and noodles were compared with those of popular commercial wheat classes from the USA, Canada and Australia. All starches were analyzed for amylose content, pasting properties measured by a rapid visco analyzer (RVA), swelling power, thermal properties measured by differential scanning calorimetry (DSC), enzyme digestibility, and chain length distribution of amylopectin (DP 6–17). All starch characteristics studied, except the chain length distribution of amylopectin, were significantly different among the tested wheat classes and varieties/breeding lines. Including Japanese wheat varieties/breeding lines, higher amylose contents and lower peak viscosities were found in hard wheats than in soft wheats. Interestingly, enthalpy, in the amylose–lipid complex measured by DSC, showed significant correlations with the pasting temperature from the RVA and swelling power.  相似文献   

11.
The in vitro digestibility and molecular and crystalline structures of rice starches (Long-grain, Arborio, Calrose, and Glutinous) differing in amylose content were investigated and the relationship between the structure and in vitro digestibility of starch was studied. Long-grain showed the highest amylose content (27.2%), whereas Glutinous showed the lowest amylose content (4.2%). Long-grain had the highest average amylopectin branch chain length (18.8) and proportion (8.7%) of long branch chains (DP ≥ 37), and the lowest proportion (26.9%) of short branch chains (DP 6–12). Among the non-waxy rice starches (Long-grain, Arborio, and Calrose), Calrose had the lowest average chain length (17.7) and the lowest proportion (7.1%) of long branch chains (DP ≥ 37). The relative crystallinity of rice starch followed the order: Glutinous (33.5%) > Calrose (31.4%) > Arborio (31.0%) > Long-grain (29.9%). Long-grain had the highest gelatinization temperature and the lowest gelatinization temperature range, whereas Glutinous showed the highest gelatinization temperature range and gelatinization enthalpy. Arborio had the highest melting enthalpy for amylose–lipid complex among the tested rice starches. Pasting temperature, setback, and final viscosity increased with increasing amylose content, whereas the peak viscosity and breakdown showed negative correlations with amylose content. The rapidly digestible starch (RDS) content of the tested rice starches followed the order: Glutinous (71.4%) > Calrose (52.2%) > Arborio (48.4%) > Long-grain (39.4%). Contrary to this, the slowly digestible starch (SDS) and resistant starch (RS) contents showed an opposite trend compared to RDS. Digestibility (RDS, SDS, and RS) of the rice starches was significantly correlated (p ≤ 0.05) with amylose content, proportions of DP 6–12 and DP 13–24, relative crystallinity, intensity ratio (of 1047 cm−1 to 1022 cm−1 from Fourier transform infrared spectroscopy), swelling factor, amylose leaching, onset temperature of gelatinization, gelatinization temperature range, gelatinization enthalpy, pasting temperature, peak viscosity, breakdown, setback, and final viscosity.  相似文献   

12.
The comprehension of the structure of starch granules is important for the understanding of its physicochemical properties. Native and sour cassava starches after being analyzed with respect to their pasting properties and baking expansion capacity, were treated with 2.2 N HCl at 38 °C for a maximum of nine days. The starch granules remaining after lintnerization were analyzed for amylose content and intrinsic viscosity, by X‐ray diffraction, scanning electron microscopy and chromatographic analysis. The results indicated that the acid hydrolysis on all starches occurred in two steps. The first one, with high hydrolysis rate, was characterized by a quick degradation of the amorphous part of the granules whereas the second step, with lower hydrolysis rate, was characterized by a higher resistance of the organized areas of the granules to acid treatment. Most of the amylose chains were found in the amorphous areas of starch granules only a small percentage was involved in the crystalline regions. The microscopic and chromatographic analysis demonstrated that the acid hydrolysis was not able to disrupt the entire granular crystalline structure. Fermented starch showed amylose and/or amylopectin chain fractions resistant to pullulanase, probably due to structural alterations during fermentation.  相似文献   

13.
Waxy and normal corn starches with different moisture contents, 5.1-16.9% and 4.8-15.9%, respectively, were prepared and treated in methanol containing 0.36% HCl at 45 °C for 1 h. Recovery of all the treated starches was found to be above 90%. Peak viscosity, gelatinization temperature and enthalpy change of gelatinization of waxy and normal corn starches decreased after treatment and this decrement was found to be more in treated starches having lower initial moisture content. The weight-average degree of polymerization and chain length (CL) of waxy and normal corn starches decreased upon acid-methanol treatment. The decrement ratio of molecular weight of modified starches was found to be negatively correlated with the initial moisture content of the starches. The decrement ratio of normal corn starch was higher than waxy corn starch with similar moisture content of starch. The content and CL of long chain fraction of amylopectin for waxy corn starch slightly decreased after treatment, while no obvious trend was found among starches with different moisture contents. CL of amylose for acid-methanol-treated normal corn starch decreased and this change was found to be higher in starches with lower initial moisture contents. Results demonstrated that the initial moisture content of starch granules strongly influenced the functional properties and degradation of starch treated by acid in methanol.  相似文献   

14.
Three different pea starches were annealed in excess water at 45 °C for 24 and 72 h, and the changes in their structure and functionality were determined. Annealing resulted in slightly irreversible swelling with leaching of some amylose molecules, which was accompanied by small changes in granular morphology and relative crystallinity, but significant changes in functionality such as decreased swelling power and starch solubility and increased thermal transition temperatures, enthalpy changes, pasting viscosities and in vitro digestibility. Annealing led to an increase in proportion of B-type polymorphs within C-type pea starches, which was explained as being due to a polymorphic transition from A to B. Annealing mainly acts on the amorphous regions of starch granules, leading to amylose leaching. The removal of amylose molecules can reduce the long-range forces within the granule and thereby weakening the overall granule structure and leading to significant changes to functional properties. This study showed that annealing is a mild but important physical modification of starch, which can be used as a pretreatment technique to tailor the starch functionality for specific industrial application.  相似文献   

15.
Physicochemical properties of acorn (Quercus palustris) starch were studied. Acorn starch granules were spherical or ovoid, with diameters ranging from 3–17 μm. Acorn starch exhibited A‐type X‐ray diffraction pattern, an apparent amylose content of 43.4% and absolute amylose content of 31.4%. Relative to other A‐type starches, acorn amylopectin had a comparable weight‐average molar mass (3.9×108 g/mol), gyration radius (288 nm) and density (16.3 g mol−1nm−3). Average amylopectin branch chain‐length corresponded to DP 25.5. Onset gelatinization temperature was 65.0°C and peak gelatinization temperature was considerably higher (73.7°C). The enthalpy change of gelatinization was very high compared to non‐mutant starches (20.8 J/g). An amylose‐lipid thermal transition was not observed. Starch retrograded for 7 d at 4°C had very high peak melting temperature (54.2°C) relative to other A‐type starches. Final (260 RVU) and setback (138 RVU) viscosity of an 8% acorn starch paste was high relative to other starches and pasting temperature was 71.5°C.  相似文献   

16.
Mango and banana starches were isolated from unripe fruits and their morphology; thermal and pasting properties; molar mass and chain length distribution were determined. Mango starch granules were spherical or dome‐shaped and split, while banana starch had elongated granules with a lenticular shape. Amylopectin of both fruit starches had a lower molar mass than maize starch amylopectin; however, mango amylopectin had the highest gyration radius. Banana amylopectin showed the lowest percentage of short chains [degree of polymerization (DP) 6–12] and the highest level of long chains (DP ≥ 37); mango amylopectin presented the highest fraction of short chains, but the level of longest chains was intermediate between those of banana and maize amylopectins. Banana starch presented the highest average gelatinization temperature followed by mango starch and maize starch had the lowest value; a similar pattern was found for the gelatinization enthalpy. The two fruit starches had a lower pasting temperature than maize starch, but the former samples showed higher peak and final viscosities than maize starch. Structural differences identified in the fruit starches explain their physicochemical characteristics such as thermal and pasting behavior.  相似文献   

17.
H. J.  An J. M.  King 《Journal of food science》2006,71(7):C437-C441
ABSTRACT:  Pasting characteristics were examined for conventionally or ohmically heated rice starch and rice flours. Brown rice flour showed the greatest cooking stability and least retrogradation potential. Brown rice flour also showed the greatest pasting temperature and lowest peak viscosity, whereas commercial starch had the lowest pasting temperature. Nonstarch components of the brown rice flour, such as fat and protein, may have acted as stabilizers delaying water access into the granules and reducing swelling of the starch. Ohmic heating reduced pasting temperature for commercial rice starch, resulting in a starch that swelled faster. Furthermore, ohmic heating produced better cooking stability in white rice flour 1 and 2 than in the native sample, and caused white rice flour 2 to have less potential for retrogradation than the conventionally heated sample. At lower electric field strength (20 V/cm), ohmic heating resulted in the greatest cooking stable starches compared to higher voltages (40 and 70 V/cm) because more starch granules were disrupted from a longer cooking time, so there were fewer intact granules for pasting. Ohmic heating has been shown to alter rice starch and flour pasting characteristics with an added influence of lipids, proteins, and amylose contents.  相似文献   

18.
The starches and flours from four different rice cultivars were evaluated for composition, crystallinity characteristics, blue value, turbidity, swelling power, solubility, pasting properties, and textural and retrogradation properties. The amylose content of starches and flours from different rice cultivars differed significantly. The results showed that the physicochemical properties of rice starch and rice flour were correlated to amylose content. The crystallinity degree of rice starch and flour depended on amylose content. The blue value, turbidity value, and gel hardness were positively correlated to amylose content; however, the swelling power, solubility, and gel adhesiveness were negatively correlated to amylose content. Furthermore, the pasting properties and gel textural and retrogradation properties of rice flours were related to the structure properties of rice starch. And the characteristics of starch, protein, and lipid significantly influenced the turbidity, pasting properties, and gel textural and retrogradation properties of rice flours.  相似文献   

19.
Starches from cowpea and chickpea seeds were isolated and their properties were compared with those of commercial yellow pea starch. Amylose contents were 25.8%, 27.2%, and 31.2%, and the volume mean diameter of granules, determined in the dry state, were 15.5, 17.9, and 33.8 μm for cowpea, chickpea and yellow pea starches, respectively. All three legume starches showed a C-type X-ray diffraction pattern and two-stage swelling pattern. Amylopectin populations were isolated and the unit chain profiles were analyzed by HPLC after debranching with pullulanase. The degree of polymerization (DP) of short chain populations was about 6–50 and the populations of long chain had a DP of 50–80. Cowpea showed a lower weight ratio of short:long chains than chickpea and yellow pea starches. The larger portion of long side chains in cowpea amylopectin can be correlated with a higher gelatinization temperature, greater pasting peak and a slight difference in crystalline structure found for cowpea starch. Chickpea and yellow pea starches exhibited similarity in unit chain profile of amylopectin as well as in gelatinization temperature and pasting profile, while they differed in amylose content, particle size and syneresis. It is assumed that the chain length distribution of amylopectin has a large influence on starch properties.  相似文献   

20.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号