首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
Buckling analysis and design of anisogrid composite lattice conical shells   总被引:1,自引:0,他引:1  
Composite lattice anisogrid shells have now become a popular choice in many aerospace applications. Their use in various structural components, such as rocket interstages, payload adapters for spacecraft launchers, fuselage components for aerial vehicles, and parts of the deployable space antennas requires the development of more advanced finite-element models and analysis techniques capable of predicting buckling behaviour of these structures under variety of loadings. A specialised finite-element model generation procedure (design modeller) is developed and applied to the buckling analysis of the composite anisogrid conical shells treated as three-dimensional frames composed of the curvilinear ribs made of unidirectional composite material. Featuring a dedicated control procedure for positioning the beam elements, the design modeller enables a close approximation of the original twisted geometry of the curvilinear ribs. The parametric finite-element buckling analyses of the anisogrid conical shells subjected to axial compression, transverse bending, pure bending, and torsion showed the robustness and potential of the modelling approach. It was demonstrated that the buckling resistance can be significantly enhanced by either increasing the stiffness of a few hoop ribs located in the close proximity to the section with the larger diameter, or by introducing the additional hoop ribs in the same part of the conical shell. The effectiveness of the design analyses is demonstrated using particular examples. It has been shown that the resultant optimised designs can produce up to 22% mass savings in comparison with the non-optimised lattice shells.  相似文献   

2.
The paper investigates the buckling behaviour of anisogrid composite lattice cylindrical shells under axial compression, transverse bending, pure bending, and torsion. The lattice shells are modelled as three-dimensional frame structures composed of curvilinear ribs subjected to the tension/compression, bending in two planes and torsion. The specialised finite-element model generation procedure (model generator/design modeller) is developed to control the orientation of the beam elements allowing the original twisted geometry of the curvilinear ribs to be closely approximated. The effects of varying the length of the shells, the number of helical ribs and the angles of their orientation on the buckling behaviour of lattice structures are examined using parametric analyses. Buckling of the lattice shells with cutouts is also analysed. The results of these studies indicate that the modelling approach presented in this work can be successfully applied to the solution of design problems.  相似文献   

3.
Grid-stiffened composite structures are known for their very high efficiency under compressive loading environment. The grid of stiffening ribs is the primary feature in these structures and filament winding is employed as the most convenient manufacturing technique. Three different types of circular cylindrical structures – unstiffened shell (with skin only), lattice cylinder (with ribs only) and grid-stiffened shell (with skin and ribs) – are considered for experimental study and a series of these structures have been manufactured adopting a simplified and cheap manufacturing process. Different aspects of manufacturing that include tooling and other processing aspects are presented in this paper. Axial compression tests have been carried out and the results are compared with finite element analysis. Based on the test results and comparison with finite element analysis, conclusions are drawn on the efficacies of this relatively new class of structures.  相似文献   

4.
K-500 superconducting cyclotron is in the advanced stage of commissioning at VECC, Kolkata. Superconducting magnet is one of the major and critical component of the cyclotron. It has been successfully fabricated, installed, cooled down to 4.2 K by interfacing with LHe plant and energized to its rated current on 30th April, 2005 producing magnetic field of 4.8 T at median plane of cyclotron. The superconducting magnet (stored energy of 22MJ) consists of two coils (α and β), which were wound on a sophisticated coil winding machine set-up at VECC. The superconducting cable used for winding the coils is multi filamentary composite superconducting wire (1.29 mm diameter) having 500 filaments of 40 μm diameter Nb-Ti in copper matrix which is embedded in OFHC grade copper channel (2.794 mm × 4.978 mm) for cryogenic stability. The basic structure of coil consists of layer type helical winding on a SS bobbin of 1475 mm ID × 1930 mm OD × 1170 mm height. The bobbin was afterwards closed by SS sheet to form the LHe chamber. The total weight of the coil with bobbin was about 6 tonne and the total length of the superconducting cable wound was about 35 km. Winding was done at very high tension (2000 PSI) and close tolerance to restrict the movement of conductor and coil during energization. After coil winding, all four coils (two each on upper and lower half of median plane of cyclotron) were banded by aluminium strip (2.7 mm × 5 mm) at higher tension (20,000 PSI) to give more compressive force after cool down to 4.2 K for restricting the movement of coil while energizing and thereby eliminating the chances of quench during ramping of current.After completion of coil winding by October, 2003, cryostat assembly was taken up in house. The assembly of cryostat (13 tonne) with support links (9 Nos.) refrigeration port, instrumentation port, helium vapour cooled current loads, etc. was completed by June, 2004. Meanwhile assembly of magnet frame was taken up and the cryostat was positioned in the magnet frame with proper alignment by August, 2004. After installation of cryostat on magnet, the cryostat was connected to the helium refrigerator/liquefier, having refrigeration capacity of 200 W and 100 l/h in liquefier mode with LN2 pre-cooling. The cryogenic delivery system supplying the liquid helium and liquid nitrogen to the superconducting magnet was successfully commissioned in November, 2004. The cool down of the cryostat to 10 K took around 8 days following which the LHe was filled in the cryostat (300 l) on 15th January, 2005. Subsequently the superconducting coils (α and β) were energized by two DC current regulated power supplies (20 V, 1000 A, 10 ppm stability) with slow and fast dump resistors connected externally across the superconducting coils for protection of coils at the time of power failure and quench.The paper describes the intricacies involved in coil winding, winding set-up, assembly of cryostat, cooling down the superconducting coils, filling by LHe and energization to rated current. The paper also highlights the operating experience of superconducting magnet and related test results.  相似文献   

5.
We report the annealing temperature dependence of global and local structures of hydrothermally grown KNbO3 nanorods. With increasing annealing temperature, the amount of hydroxyl groups in the KNbO3 nanorods decreased and finally disappeared at about 800 °C. Morphology of the nanorods seemed not to change significantly, however, X-ray intensity ratio between (0 2 2) and (2 0 0) planes, i.e., I0 2 2/I2 0 0, increased with decreasing lattice hydroxyl group contents. This result could be attributed to the fact that the hydroxyl groups were desorbed more effectively along the [0 1 1] direction than in other directions due to the elongated nanorod along the [0 1 1] direction. The frequencies of external and bending modes, besides stretching mode, showed red-shift with decreasing lattice hydroxyl group contents. This result implied that the lattice hydroxyl groups existed as interstitial defects near K ions.  相似文献   

6.
The buckling and failure characteristics of moderately thick-walled filament-wound carbon–epoxy composite cylinders under external hydrostatic pressure were investigated through finite element analysis and testing for underwater vehicle applications. The winding angles were [±30/90]FW, [±45/90]FW and [±60/90]FW. ACOS, an in-house finite element program, successfully predicted the buckling pressure of filament-wound composite cylinders with 2 ∼ 23% deviation from the test results. The analysis and test results showed that the cylinders do not recover the initial buckling pressure after buckling and that this leads directly to the collapse. Major failure modes in the test were dominated by the helical winding angles.  相似文献   

7.
The quasi-static and blast loading response of lattice structures   总被引:1,自引:0,他引:1  
A range of metallic lattice structures have been manufactured using the selective laser melting (SLM) rapid manufacturing technique. The lattice structures were based on [±45°] and [0°, ±45°], unit-cell topologies. Initially, the structures were loaded in compression to investigate their progressive collapse behaviour and associated failure mechanisms. Tests were then undertaken at crosshead displacement rates up to 3 m/s in order to characterise the rate-dependent properties of these architectures. A series of blast tests were then undertaken on a ballistic pendulum in order to investigate the behaviour of lattice structures under these extreme loading conditions.  相似文献   

8.
Fiber reinforced high temperature polymer matrix composites are currently gaining wide usage in aircraft structures, especially in airframe and engine inlet casing. The failure of composites in worst-case operational conditions mandates the extensive investigation of the mechanical behavior, and the durability in long-term performance and service life under thermal oxidation. In this work, unidirectional IM7 carbon fiber reinforced high-temperature BMI resin composite (IM7/5250-4) were isothermally aged in air for 2 months at 195 °C and 245 °C, respectively. The dynamic behavior of thermally aged composites was investigated on a split Hopkinson pressure bar (SHPB) in three principal directions. The results indicate that thermal oxidation leads to significant reduction in both stiffness and strength of the composites. Optical micrographs of fracture surface and failure pattern of composite after SHPB impact reveals oxidation induced debonding along the fiber–matrix interface due to oxygen diffusion under long-term exposure to elevated temperatures.  相似文献   

9.
CdO nanostructures were synthesized by electrodeposition on the indium doped tin oxide conducting glass substrate at low temperatures (70, 80 and 90 °C) from aqueous solution. Scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed to characterize the CdO nanostructures. The results demonstrated that the CdO nanostructures synthesized by electrodeposition grew preferably along the [1 1 1] and have face-centered cubic CdO structures and possessed good crystallinity. XPS measurements showed that the nanostructures had Cd and O elements present in the oxide state and no traces of metallic Cd were observed. The nanostructures were highly transparent in the visible region of spectrum and their energy gap was about 2.45 eV.  相似文献   

10.
The BaTiO3-CoFe2O4 (BTO-CFO) composite films were grown on SrTiO3 (STO) (100) substrates at 750 °C under various working pressures by pulsed laser deposition. The composite film grew into a supersaturated single phase at the working pressure of 10 mTorr, BTO and CFO (00 l) oriented hetero-epitaxial films on STO (100) at 100 mTorr, and a polycrystalline composite film at 500 mTorr. The slow growth rate at high working pressure led to the phase separation in the composite film. The CFO was compressively strained along out-of-plane due to the lattice mismatch with the BTO matrix phase. The BTO-CFO composite film grown at 100 mTorr showed reversible switching of ferroelectric polarization and magnetic hysteresis with strong magnetic anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号