首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reformulation of traditional food systems to introduce new ingredients may change their structure and perceived texture. Interactions between proteins and starch during processing can markedly influence starch gel network structure and rheological profile. The present work aimed to study the effects of soybean protein and the products of enzymatic modification on the pasting and rheological profile of corn and cassava starch. The behavior of those protein‐enriched gels during storage was also assessed. Soybean protein isolate (SPI) was incubated with endopeptidase (AL) or food grade microbial transglutaminase (TG). Pasting and rheological behavior, water retention capacity, and structure of protein– and hydrolyzed protein–starch gels were analyzed. Protein incorporation increased the viscosity of starch suspension during and after heating. SPI‐modified proteins increased peak viscosity. Only the structural modifications brought by TG on SPI increased the final viscosity during starch pasting and the storage modulus (G′). This modulus (G′) of the gelled systems decreased with the addition of AL‐treated protein isolate. Light and fluorescence microscopy showed that SPI formed a continuous phase, like a network, in the gelled system. Different network structures and rheological properties can be obtained when SPI are modified by protease and TG enzymes, which may be very useful for designing new food products.  相似文献   

2.
《Food chemistry》1999,65(4):493-501
The relationship between pasting properties (determined with a Rapid Visco-Analyser) of maize starch and the texture of the resulting gel was examined after addition of Amaranthus and buckwheat proteins. An increase in the peak viscosity due to the addition of protein concentrates was observed, and a lesser increase from the addition of protein hydrolysates. The increase in starch pasting viscosity was related to protein solubility, and could be attributed to the starch granule stabilizing action of proteins. The interactions between starch and proteins were further investigated using oscillation and creep/recovery rheological tests. Generally, the proteins weakened starch gel structure, shown by the lower elastic modulus (G′) and higher phase degree (δ) compared to gels without any proteins added. The same results were obtained from creep/recovery experiments. It seemed that, since native proteins interact more with the granules, they act as a barrier to the release of amylose molecules; hence the resulting gels became weak. If desired, such effects could be lessened by partially hydrolyzing the proteins. ©  相似文献   

3.
The structural characteristics, pasting and rheological behaviours of cassava starch before and after pregelatinisation were determined by various modern analysis techniques. Pregelatinisation, especially in an ultrasonic environment, can disrupt the granule structure, crystalline structure and short‐range ordered molecular structure of cassava starch. Compared with native starch, pregelatinisation had significantly decreased viscosities and weakened gel structures of starch pastes. Not only did native and pregelatinised starch pastes exhibit shear‐thinning behaviours but also the pregelatinised treatment resulted in the formation of weak gel structures. This study enabled us to acquire the desired pasting and rheological properties of pregelatinised starch by modulating its hierarchical structural changes.  相似文献   

4.
为探究蛋清蛋白对豌豆淀粉凝胶化及凝胶特性的影响。分别以0%、3%、6%、9%和12%的蛋清蛋白替代豌豆淀粉,研究蛋清蛋白对豌豆淀粉糊化特性、热特性、静态流变、动态流变、凝胶质构及水分子状态的影响。结果表明:蛋清蛋白以浓度依赖的方式影响豌豆淀粉的糊化特性,峰值黏度、谷值黏度、崩解值、最终黏度、回生值均随蛋清蛋白添加量增加而降低,而糊化温度则升高。蛋清蛋白对豌豆淀粉凝胶化温度影响不显著,但降低了淀粉的凝胶化焓值。添加不同量蛋清蛋白的豌豆淀粉糊均表现为假塑性流体特征,Herchel-Bulkley模型能够很好地拟合其静态流变行为,稠度指数和屈服应力均随蛋清蛋白添加量增加而降低。添加蛋清蛋白降低了豌豆淀粉糊体系的黏弹性及凝胶的硬度、强度和可塑性。蛋清蛋白对豌豆淀粉凝胶中自由水含量影响不显著,但使结合水含量增加而不可流动束缚水含量降低。  相似文献   

5.
The aim of this work was to study the influence of enzyme active and inactive soy flours on the properties of cassava and corn starches. Four starch/soy flour composites were evaluated: cassava/active soy flour (Cas/AS), cassava/inactive soy flour (Cas/IS), corn/active soy flour (Corn/AS) and corn/inactive soy flour (Corn/IS). Starch gelatinization occurred at 58.67°C for Cas and at 64.19°C for corn; gelatinization occurred at higher temperatures when soy flours were present, while ΔH diminished. The presence of AS reduced 80% the retrogradation enthalpy of Cas and 40% that of corn. Cas presented lower pasting temperature than corn starch (67.8 and 76.8°C, respectively) and higher peak viscosity (427.9 and 232.8 BU, respectively). The pasting properties of both starches were drastically reduced by soy flours, and this effect was more noticeable in Cas; AS had higher effect than IS. X‐ray diffraction pattern of retrograded samples showed that both starches recrystallisation (mainly that of Cas) was reduced when AS was added. Tan δ values decreased with AS addition to corn, but they increased when added to Cas. The images obtained using confocal laser scanning microscopy (CLSM) showed that IS was distributed as large aggregates, whereas AS distribution was more homogeneous, especially when incorporated to Cas. These results show that cassava starch interacts specifically with active soy flour (AS, mainly in native state). The delaying effect of AS on cassava starch retrogradation was clearly shown. This finding could be useful in obtaining gluten‐free breads of high quality and low retrogradation rate.  相似文献   

6.
研究不同核桃蛋白添加量下大米淀粉的糊化特性、流变特性、热特性及凝胶质构和水分子状态.结果表明,核桃蛋白以浓度依赖的方式降低了大米淀粉糊的黏度和相变焓值,而使糊化温度升高,当核桃蛋白添加质量分数达12%时,峰值黏度、谷值黏度、最终黏度分别降低了 30.77%、12.35%和14.65%,糊化温度升高了 8.89%;所有样...  相似文献   

7.
Refined field pea (Pisum sativum L.) starches were prepared from air‐classified pea starch by washing or from whole pea by wet milling, and analyzed for their physicochemical and pasting characteristics in the presence of alkali and borax. Commercial corn and high amylose corn starches were included in the study for comparative purposes. The two pea starches exhibited similar physicochemical characteristics. Amylose content markedly influenced pasting and other characteristics of the corn starches. Pea starch and high amylose corn starch exhibited little viscosity development during pasting in deionized water. The presence of alkali or borax significantly altered the peak viscosities and cold paste stabilities of all four starches in a concentration dependent manner. Alkali and borax increased peak and cold paste viscosity and reduced syneresis in all cases.  相似文献   

8.
将蜡制玉米淀粉、酯化蜡制玉米淀粉和交联酯化蜡制玉米淀粉以添加量分别为0%、2%、4%、6%、8%、10%添加到肌原纤维蛋白中,形成蛋白淀粉复合物,研究3?种淀粉对肌原纤维蛋白凝胶保水性、质构特性、白度值、表面疏水性、流变特性和微观结构的影响。结果表明,相比纯肌原纤维蛋白,淀粉均能显著提高复合凝胶的保水性、硬度和弹性(P<0.05),且随添加量的增加而显著增加(P<0.05),但在添加量为10%时,各指标上升不显著(P>0.05),其中交联酯化蜡制玉米淀粉效果最好;3?种淀粉均能增加复合凝胶的白度值,但交联酯化蜡制玉米淀粉的添加会使复合凝胶的白度值过大(P<0.05),对色泽不利;同时,淀粉能显著提高复合蛋白的表面疏水性和凝胶的弹性模量(P<0.05),且随着添加量的增加而显著增加(P<0.05),与肌原纤维蛋白凝胶相比,复合凝胶结构趋于致密均匀。在实验的3?种淀粉中,除色泽因素外,交联酯化蜡制玉米淀粉提高凝胶性能的效果要优于其他两种淀粉。?  相似文献   

9.
房子蔚  王雨生  于真  陈海华 《食品科学》2022,43(20):109-116
为探究油酸和麦芽糖醇混合物抑制玉米淀粉老化的效果,通过快速黏度分析、差示扫描量热分析、质构分析、动态流变分析、低场核磁共振分析、红外光谱分析和X射线衍射分析等方法比较不同复配比例的油酸和麦芽糖醇混合物对玉米淀粉糊化特性、老化特性、流变学特性、质构及结晶结构等的影响。结果显示:添加油酸和麦芽糖醇混合物后,玉米淀粉的糊化温度升高,回生值和老化速率降低,且当油酸和麦芽糖醇质量比为0.5∶1.5时,糊化温度最高(77.80 ℃),回生值最低(1 218 cP),老化速率比原淀粉降低了60%;油酸和麦芽糖醇混合物的添加能增大玉米淀粉的损耗角正切值和横向弛豫时间(T2),形成较弱的凝胶结构,降低玉米淀粉凝胶的硬度、短程有序度和相对结晶度;当油酸和麦芽糖醇为0.5∶1.5质量比复配时,混合物对延缓玉米淀粉老化存在协同作用。这可能与麦芽糖醇能抑制淀粉体系中水分子运动、油酸能与淀粉形成淀粉-脂质复合物从而有效抑制淀粉重结晶有关。研究结果可为改善玉米淀粉加工特性、提高淀粉基食品品质提供一定的理论依据。  相似文献   

10.
This study evaluated the effect of added lactic acid and/or UV irradiation on the depolymerization and rheological properties of cassava and corn starches. Combination of lactic acid addition and UV irradiation decreased the intrinsic viscosity of corn and cassava starches. Lactic acid addition alone also decreased paste viscosity in both starches. The paste viscosity of cassava (but not corn) starch was also reduced after UV irradiation. Acidification and UV irradiation increased expansion volume during the baking of cassava (but not corn) starch dough. The baking expansion of cassava starch may be due to its high swelling capacity and solubility resulting from molecular degradation after acidification and irradiation. For corn starch, its high gelatinization temperature and internal lipids content could interfere in starch leaching and thus delay the decrease in viscosity and inhibit dough expansion.  相似文献   

11.
Starch was isolated from Barnard Red (a South African sorghum variety) and a Chinese sorghum sample. Starch and flour properties (gelatinization, pasting, and gel texture) were compared with those of a standard corn starch. Significant findings were: 1. Barnard Red starch had lower gelatinization temperature than either Chinese sorghum or corn starch; 2. starch gels of corn and Barnard Red were of similar hardness; 3. Barnard Red starch pastes had very high viscosity compared to corn and Chinese sorghum; 4. Barnard Red starch shear‐thinned more than its flour paste in the absence of amylase activity.  相似文献   

12.
The effects of yellow mustard mucilage (YMM) on the functional and rheological properties of buckwheat and pea starch were studied. Addition of YMM resulted in a marked increase of peak viscosity for both buckwheat and pea starches. Dynamic oscillation measurements showed that the storage modulus (G′), loss modulus (G″) and dynamic viscosity (η*) of buckwheat and pea starches were increased but tangent δ was decreased by addition of YMM. The gel textures of both starches were markedly changed by the presence of YMM, which resulted in an increase of hardness, adhesiveness and chewiness but a decrease of resilience. Differential scanning calorimetry showed that the presence of YMM slightly increased melting enthalpy (ΔH) and the phase transition temperature range (TcTo) of buckwheat starch but these did not change much for pea starch. Addition of YMM–locust bean gum mixture (9:1) similarly increased the viscosity of buckwheat and pea starches but decreased gel hardness. The swelling powers of both starches and solubility of buckwheat starch were slightly decreased in the presence of YMM. Addition of YMM slowed the syneresis of buckwheat and pea starch gels.  相似文献   

13.
The viscoelastic and textural properties of freshly prepared and freeze-thawed sago starch–sugar gels were studied in comparison with other native starches from corn, wheat, tapioca, and potato. The gelatinisation and retrogradation properties of starches were studied using a DSC while the pasting properties of starch–sugar mixtures during the cooking period were studied using a starch pasting cell. The freeze-thaw stability of gels was evaluated by gravimetric measurements of the water of syneresis. The different starches gave properties which varied following to their botanical sources. High-amylose cereal starches (wheat and corn) produced harder gels, while low-amylose root starch (tapioca) produced softer gels. Sago and potato gels showed close similarities in their viscoelastic and textural characteristics. Although the freeze-thaw cycle greatly increased the viscoelasticity and hardness of these two gels, reheating at high temperature significantly reduced these negative effects and resulted in partial recovery of the gel structures. Sago starch produced gels with very low syneresis and high cohesiveness, implying its potential use as a gelling agent in the frozen food industries.  相似文献   

14.
Waxy and normal maize starches of various pH values and salt contents were prepared, irradiated with gamma rays (5–20 kGy) and their molecular structure, pasting viscosity and rheological properties determined. Average molar mass and size of both waxy and normal maize starches decreased considerably by irradiation from >338.0×106 to <39.4×106 g/mol and from >237.5 to <125.2 nm, respectively. Adjustments of pH had little influence on the average molar mass and size of irradiated starch, whereas incorporation of salt greatly reduced the molar mass and size of irradiated waxy and normal maize starches. As the pH increased from 4 to 8, the pasting viscosity of the irradiated starches decreased from 1032 to 279 mPa s in waxy and from 699 to 381 mPa s in normal starches. Pasting viscosity of both irradiated waxy and normal starch decreased from 689 to 358 mPa s and from 327 to 184 mPa s as the salt concentration increased from 1 to 5%. The G′ of gels, determined during cooling from 90 to 10°C or storage for 8 h, decreased in irradiated waxy and normal starches by pre‐conditioning at pH 8 and in irradiated waxy starches by pre‐conditioning at 5% NaCl. With 5% NaCl, G′ of irradiated normal maize starch during cooling increased up to the irradiation level of 10 kGy, and increased during storage for 8 h at all levels of irradiation. Incorporated salt prior to irradiation appears to induce incremental modifications in the molecular structure, rheological and retrogradation properties of starch by boosting the degradation of molecules.  相似文献   

15.
The starch digestibility and rheological properties of gels were evaluated in the presence of three non-starch polysaccharides (agar, xanthan gum and konjac glucomannan) with rice starch. Each polysaccharide was added to 30% (w/w) rice starch suspension at defined concentrations and starch gels were prepared. The extent of starch gel digestibility was determined by an in vitro method and rheological properties by a dynamic oscillatory test and a compression test. The added polysaccharides suppressed starch hydrolysis in the gels compared with the control, and a concentration dependency of this suppressive effect was observed. Adding agar and xanthan gum increased the storage shear modulus (G′) of starch gels, while adding konjac glucomannan decreased G′ values. The results indicate that the suppressive effect of non-starch polysaccharides on starch digestibility appears to be not only due to the rigidity of the gel, but also the interaction between starch and non-starch polysaccharides.  相似文献   

16.
The aim of this study was to analyze the influence of chemically modified starches (HDP and ADA) and high amylose corn starch (HACS) on the rheological and thermal properties of gluten-free dough based on corn and potato starches with pectin and guar gum. The results indicate that the dough with the addition of modified starch behaves as weak gel, the value of storage modulus G′ significantly depends on the frequency and the values of tan δ = G″/G′ range from 0.32 to 0.49. Significant influence of hydroxypropylated distarch phosphate (HDP) on the viscoelastic properties of dough was observed. The share of modified starch in the system caused a decrease of the instantaneous and viscoelastic compliance. It also influenced the retardation time and zero shear viscosity. The application of modified starches (HDP and ADA) for dough preparation did not have much impact on the pasting characteristics. However, significant reduction of the onset and end viscosities were found for high amylose starch (HACS). Thermograms obtained for individual dough systems were characterized by the presence of two peaks, associated with the existence of two different starches in the system. No significant effect of modified starch on the onset temperature (TO) and only a slight effect of HACS starch on gelatinization enthalpy were observed. However, the level of addition of individual starch affected peak and end (TE) temperatures, depending on the type of preparation.  相似文献   

17.
研究黄原胶、复合磷酸盐、魔芋粉及复合稳定剂对豌豆淀粉糊化、热及凝胶特性的影响。结果表明,黄原胶和魔芋粉显著增加了豌豆淀粉的峰值黏度、最终黏度等黏度参数,复合磷酸盐和复合稳定剂对豌豆淀粉这些特性表现出相反的作用。黄原胶和魔芋粉对凝胶化温度没有显著影响,但降低了豌豆淀粉凝胶化焓值,复合磷酸盐和复合稳定剂升高了豌豆淀粉凝胶化温度及凝胶化焓值。四种改良剂均降低了豌豆淀粉凝胶的强度和可塑性。黄原胶和魔芋粉对豌豆淀粉凝胶中水分流动性没有影响,而复合磷酸盐和复合稳定剂显著增加了豌豆淀粉凝胶中结合水和半结合水的比例。不同改良剂对豌豆淀粉凝胶的微观结构均有显著影响,其中魔芋粉的影响相对较小。  相似文献   

18.
The Effects of hsian‐tsao leaf gum (HG) on the rheological/textural properties of non‐waxy starches were studied. Pronounced interactions between starch and HG were observed. The rheological properties, including pseudo‐gel viscosity in the rapid visco‐analyser test, storage and loss moduli in the dynamic rheological test, as well as firmness in the texture analyser test, of the mixed gels generally improved with increasing gum concentration to a certain level, then deteriorated with further increase in gum concentration. The critical gum concentration for the development of optimal rheological properties depended on the starch type and concentration. Within the concentration range studied, mixed systems with wheat starch could generally reach the highest pseudo‐gel viscosity, firmness, and storage modulus if the starch/HG ratio was appropriate, followed by those with corn and tapioca starch. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
本实验研究了不同比例的木薯变性淀粉对猪肉肌原纤维蛋白(MP)凝胶特性的影响。分析了凝胶质构、静态流变和热力学特性的变化。结果显示:添加10%的木薯变性淀粉增加了蛋白凝胶的弹性,而凝胶的硬度、强度、内聚性、咀嚼性和胶黏性相对适中,从而改善凝胶的质构特性;通过差示扫描量热仪(Differential scanning calorimetry,DSC)分析发现木薯变性淀粉添加量为10%时,降低了蛋白的热相变温度和焓值,促进蛋白变性;另外,木薯变性淀粉的添加也改变了凝胶的表观粘度及触变环面积。当木薯淀粉添加量为10%时,凝胶的表观粘度和触变环面积最小,改善了凝胶的塑性能力及流变稳定性。  相似文献   

20.
以马铃薯淀粉和豌豆淀粉按照一定的比例进行复配,采用动态流变仪和质构仪测定复配体系的糊化、流变特性及凝胶强度。结果表明:复配体系的糊化温度随着马铃薯淀粉比例的增大而有所下降,由70.1℃降低到64.6℃;在淀粉质量分数为6%的体系中,马铃薯淀粉和豌豆淀粉的比例为1∶5和1∶11时复配体系的弹性模量G′较大(分别为810.1 Pa和814.7 Pa),而在比例为1∶3或1∶5时复配体系的粘性模量G″较大(分别为41.0 Pa和41.6 Pa);马铃薯淀粉和豌豆淀粉的比例为1∶5和1∶11时复配体系的Tanδ较小,此配比的两个复配体系具有较好的凝胶形成能力,且凝胶强度较大(98.5~100.1 g)。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号