首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
BACKGROUND: Owing to more stringent phosphate discharge requirements and the increasing prices of fertilizers, beneficial recovery and reuse of phosphate from industrial anaerobic effluents is becoming an important issue. Phosphate recovery by struvite or magnesium ammonium phosphate (MAP) permits its recycling in the fertilizer industry because struvite is a valuable slow release fertilizer. Two different approaches to MAP crystallization depending on initial levels of phosphate in the wastewaters were tested and compared. RESULTS: For low‐phosphate‐containing anaerobic effluents (<30 mg PO43?‐P L?1), a novel approach using ureolytic induced MAP formation with MgO addition appeared to be suitable. The residual phosphate concentrations in the effluent ranged from 5 to 7 mg PO43?‐P L?1 and the separated matter contained residual amounts of Mg(OH)2. High‐phosphate‐containing anaerobic effluents (100 to 120 mg PO43?‐P L?1) were treated efficiently using air stripping combined with MgCl2 and NaOH reagents, yielding residual phosphate levels of 8 to 15 mg PO43?‐P L?1 and spherical pure MAP crystals of 0.5 to 2 mm. CONCLUSION: Results show that depending on the initial phosphate concentrations in the wastewaters and the ammonium and magnesium levels, the strategy selected for struvite crystallization is a determinative factor in achieving a cost effective technology. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
Continuous reaction crystallization of struvite MgNH4PO4·6H2O from diluted aqueous solution containing phosphate(V) ions of concentration 0.20 wt% PO43− was investigated experimentally. The tests were carried out in a continuous DT MSMPR type crystallizer in temperature 298 K assuming 20% excess of magnesium ions at the inlet point in respect to struvite synthesis reaction stoichiometry. Influence of pH (8.5–10) and mean residence time of suspension in a crystallizer (900–3600 s) on the product crystals size distribution, their size-homogeneity and process kinetics were identified. Crystals of mean size from ca. 19 to ca. 73 μm, of diverse size-homogeneity (CV 60–87%) were produced. Struvite particles of the largest sizes and acceptable homogeneity were produced at pH 8.5 for prolonged mean residence time 3600 s. Under these conditions struvite nucleation rate did not exceed 5.3 × 107 l/(s m3) according to SIG MSMPR model predictions. Crystal linear growth rate within the investigated process parameter values varied from 3.62 × 10−9 to 1.68 × 10−8 m/s. Magnesium ions excess in a process environment influenced yield of continuous reaction crystallization of struvite advantageously – contrary to product crystals quality. Concentration of phosphate(V) ions in mother solution decreased from inlet 0.20 wt% to 0.9 × 10−3 – 9.2 × 10−3 wt% (9–92 mg/kg) depending on pH and mean residence time of suspension in a crystallizer, what can be regarded as a very good result of their recovering from solution.  相似文献   

3.
Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H3PO4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm−1 at a relative humidity 8.4% and temperature of 180 °C with a 300% H3PO4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm−2 at cell voltages >0.4 V and current densities of 3.0 A cm−2. The PTFE/PBI/H3PO4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 °C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.  相似文献   

4.
To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H3PO4)-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10−5 cm2 s−1 and ca. 10−3 M (=mol dm−3), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10−10 mol cm−1 s−1 of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H3PO4 addition eliminated the diffusion limit. The hydrogen bonds of H3PO4 or water-added H3PO4 might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.  相似文献   

5.
Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H3PO4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H3PO4 content and temperature, reaching 3.2 × 10−3 S/cm at 110 °C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H3PO4. The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 × 10−2 S/cm at 110 °C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 °C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells.  相似文献   

6.
The aim of the study was to investigate the possibility of calcium and phosphorus ion implantation into an oxide film applied onto titanium during anodic passivation. The corrosion resistance of modified titanium in Tyrode's physiological solution has been identified. Anodic oxidation was carried out in two solutions. The first contained 20 g dm−3 NaH2PO2 in 4.3 M H3PO4 (K1), whereas the other, 20 g dm−3 Ca(H2PO2)2 in 4.3 M H3PO4 (K2). Voltage of 100 and 150 V was applied. It has been found out that it is possible to incorporate Ca and P into the emerging passive layer. The application of the voltage of 150 V makes it very porous. It has been also demonstrated that titanium so modified presents higher resistance to corrosion in the investigated environment than titanium not modified in Tyrode's solution.  相似文献   

7.
A milling process to reduce kaolin to amorphous phase in the presence of KH2PO4 or NH4H2PO4 and allow mechanochemical (MC) reaction for incorporation of KH2PO4 and NH4H2PO4 into the kaolin structure was investigated in this work. Mixtures of kaolin and KH2PO4 and NH4H2PO4 in separate systems were prepared by milling in a planetary ball mill. Tests with kaolin contents ranging from 25 to 75 wt.% and mill rotational speeds from 200 to 700 rpm were performed to evaluate incorporation of KH2PO4 and NH4H2PO4 and release of K+, NH4+ and PO43− ions into solution. Analyses by XRD, DTA and ion chromatography indicated that the MC process was successfully applied to incorporate both KH2PO4 and NH4H2PO4 into the amorphous kaolin structure. Release of K+ and PO43− ions from the system (kaolin-KH2PO4) when dispersed in water for 24 h reached only up to 10%. Under similar conditions for the system (kaolin-NH4H2PO4), release of NH4+ and PO43− ions reached between 25 and 40%. These results indicated that the MC process can be developed to allow amorphous kaolin to act as a carrier of K+, NH4+ and PO43− nutrients to be released slowly for use as fertilizer.  相似文献   

8.
Monoclinic Li3V2(PO4)3 can be rapidly synthesized at 750 °C for 5 min (MW5m) by using microwave solid-state synthesis method. The refined cell parameters and atomic coordination of the sample MW5m show some deviations compared with those of the sample synthesized in conventional solid-state synthesis method, especially the coordinate of Li atoms. Compared with the electrochemical properties of the carbon-coating sample Li3V2(PO4)3, the carbon-free sample MW5m presents well electrochemical properties. In the cut-off voltage of 3.0-4.3 V, MW5m sample presents a specific charge capacity of 132 mAh g−1, almost equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1), and specific discharge capacity of 126.4 mAh g−1. In the cut-off voltage of 3.0-4.8 V, MW5m shows an initial specific discharge capacity of 183.4 mAh g−1 at 0.1 C, near the theoretical discharge capacity. In the cycle performance, the capacity fade of Li3V2(PO4)3 is dependent on the cut-off voltage and the preparation method, more capacity lost at relatively higher charge/discharge voltage. The reasons for the excellent electrochemical properties of Li3V2(PO4)3 rapidly synthesized in microwave field are discussed in detail.  相似文献   

9.
To investigate the crystal structure and electrochemical performance of samples synthesized under different microwave solid-state synthesis condition, a series of Li3V2(PO4)3 samples has been synthesized at five different temperatures for 3-5 min and at 750 °C for various time. The as-synthesized Li3V2(PO4)3 samples are characterized and studied by ICP-AES analysis, X-ray diffraction (XRD), Rietveld analysis, scanning and transmission electron microcopy (SEM and TEM). At relatively lower temperature (650 °C) and very short reaction time (3 min), pure phase of Li3V2(PO4)3 could be synthesized in microwave irradiation field. The crystal structure and Li atomic fractional coordinate present a significant deviation upon the change of microwave irradiation temperature and time. Relatively, the diffusion ability of lithium cations and the electrochemical performance are affected. Under the proper reaction temperature and time, the carbon-free samples MW750C5m and MW850C3m show the best specific discharge capacity 126.4 and 132 mAh g−1 at the voltage range of 3.0-4.3 V, near the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). At the voltage range of 3-4.8 V, the sample MW750C5m presents the best initial specific charge capacity of 197 mAh g−1, equivalent to the reversible cycling of three lithium ions per Li3V2(PO4)3 formula unit (197 mAh g−1). The initial discharge capacity, the samples MW750C5m and MW850C3m present high specific discharge capacity 183.4 and 175.7 mAh g−1, respectively. The relationship among microwave irradiation condition, crystal structure, lithium atomic fractional coordinates and the electrochemical performance have been discussed in detail.  相似文献   

10.
Starch gelatinization and enzymatic hydrolysis was carried out in a continuous Couette–Taylor flow reactor with a water jacket. The degree of gelatinization and the concentration of reducing sugars produced via enzymatic saccharification were evaluated by varying operational variables: rotation speed of an inner cylinder, initial concentration of starch and reaction temperature. At the initial concentration of the starch suspension, 50 kg m−3, starch saccharification proceeded sufficiently even at low rotation speed of the inner cylinder and saccharification temperature. At the higher initial concentration, 100 and 150 kg m−3, a higher rotation speed of the inner cylinder and temperature of the saccharification section were required to obtain sufficient starch saccharification. Even in the case of C0 = 100 and 150 kg m−3, the more reducing sugar was obtained by choosing an adequate rotation speed of the inner cylinder and a reaction temperature.  相似文献   

11.
KSr1−xPO4:xTb3+ phosphors with various concentrations (x = 0.05, 0.06, 0.07, 0.08) of Tb3+ ions were synthesized in succession by using microwave assisted sintering. The sintering condition was set at 1200 °C for 1 h in air. The microstructural and luminescent characteristics of KSrPO4:Tb3+ phosphors were investigated and are discussed here. The XRD result shows that the prepared KSr1−xPO4:xTb3+ phosphors would have an impure phase as the Tb3+ ion increases to more than x = 0.06. The photoluminescence measurement shows that the series of the emission-state 5D4 → 7F6, 5D4 → 7F4, and 5D4 → 7F3, corresponding to the typical 4f → 4f intra-configuration forbidden transitions of Tb3+, are appeared and the major emission peak is around at 542 nm. Moreover, the maximum photoluminescence intensity is appeared when the molar concentration of Tb3+ is 0.06. The decay time value of the KSr1−xPO4:xTb3+ phosphors with x = 0.06 is about 0.27 ms.  相似文献   

12.
This paper presents the results from 92 cycles of an anaerobic sequencing batch biofilm reactor containing biomass immobilized on inert support (mineral coal) applied for the treatment of an industrial wastewater containing high sulfate concentration. The pilot-scale reactor, with a total volume of 1.2 m3, was operated at sulfate loading rates ranging from 0.15 to 1.90 kgSO42−/cycle (48 h — cycle) corresponding to sulfate concentrations of 0.25 to 3.0 gSO42− l− 1. Domestic sewage and ethanol were utilized as electron donors for sulfate reduction. Influent sulfate concentrations were increased in order to evaluate the minimum COD/sulfate ratio at which high reactor performance could be maintained. The mean sulfate removal efficiency remained between the range of 88 to 92% at several sulfate concentrations. Temporal profiles along the 48 h cycles were carried out under stable operation at sulfate concentrations of 1.0, 2.0 and 3.0 gSO42− l− 1. Sulfate removal reached 99% for cycle times of 15, 25, and 30 h, and the effluents sulfate concentrations were lower than 8 mgSO42− l− 1. The results demonstrate the potential applicability of the anaerobic configuration for the biological treatment of sulfate-rich wastewaters.  相似文献   

13.
An improved solid-state coordination method namely wet coordination has been developed to synthesize carbon-coated monoclinic Li3V2(PO4)3 rapidly at a low temperature of 600 °C in 1 h. The structure of the sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX). The diffusion coefficient of the lithium ions was measured by cyclic voltammetry (CV). The electrochemical behavior of the sample exhibits a high initial discharge capacity of 130 mAh g−1, which is very close to its theoretical capacity of 132 mAh g−1 under 95 mA g−1 (0.67 C) in the range of 3.3-4.3 V (vs. Li/Li+). These results suggest that wet coordination is a promising method for large-scale production of carbon-coated Li3V2(PO4)3.  相似文献   

14.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

15.
Deyu Wang 《Electrochimica acta》2005,50(14):2955-2958
LiFePO4 doped by bivalent cation in Fe-sites show improved rate performance and cyclic stability. Under 10 C rate at room temperature, the capacities of LiFe0.9M0.1PO4 (M = Ni, Co, Mg) maintain at 81.7, 90.4 and 88.7 mAh/g, respectively, in comparison with 53.7 mAh/g for undoped LiFePO4 and 54.8 mAh/g for carbon-coated LiFePO4 (LiFePO4/C). The capacity retention is 95% after 100 cycles for doped samples while this value is only 70% for LiFePO4 and LiFePO4/C. Such a significant improvement in electrochemical performance should be partially related to the enhanced electronic conductivities (from 2.2 × 10−9 to <2.5 × 10−7 S cm−1) and probably the mobility of Li+ ions in the doped samples.  相似文献   

16.
The present study reveals the formation of porous anodic films on titanium at an increased growth rate in hot phosphate/glycerol electrolyte by reducing the water content. A porous titanium oxide film of 12 μm thickness, with a relatively low content of phosphorus species, is developed after anodizing at 5 V for 3.6 ks in 0.6 mol dm−3 K2HPO4 + 0.2 mol dm−3 K3PO4/glycerol electrolyte containing only 0.04% water at 433 K. The growth efficiency is reduced by increasing the formation voltage to 20 V, due to formation of crystalline oxide, which induces gas generation during anodizing. The film formed at 20 V consists of two layers, with an increased concentration of phosphorus species in the inner layer. The outer layer, comprising approximately 25% of the film thickness, is developed at low formation voltages, of less than 10 V, during the initial anodizing at a constant current density of 250 A m−2. The pore diameter is not significantly dependent upon the formation voltage, being ∼10 nm.  相似文献   

17.
In this study the development of blue ceramic dyes from compositions based on phosphate structures have been investigated. The replacement of cobalt by copper or iron to minimize the Co content have been considered. MFeO(PO4) (M = Co, Cu) solid solutions have been obtained with Co1−xCuxFeOPO4 (0 ≤ x ≤ 1) compositions prepared from gels and fired at 1000 °C/2 h. Co1−xCuxFeOPO4 compositions are not indicated to minimize the Co content in ceramic dyes because they decompose in glazed samples and pinhole defect is obtained. From FeCoOPO4–2FePO4 compositions, Co3Fe4(PO4)6 structure introduces the Co2+ ions into glassy matrix and suitable blue materials are obtained. In the conditions of this study, optimal cobalt amount is about 10 wt% Co from Co1−xFe1+xO1−x(PO4)1+x (x ≈ 0.6) compositions.  相似文献   

18.
Proton conductive inorganic-organic hybrid membranes were synthesized from 3-glycidoxypropyltrimethoxysilane (GPTMS) and phosphonoacetic acid (PA) with various ratios by a sol-gel process. Self-standing, homogeneous, highly transparent membranes were synthesized. TG-DTA analyses indicated that these membranes were thermally stable up to 200 °C. The results of FT-IR and 13C NMR revealed that phosphonic acid groups of PA were chemically bound to organosiloxane network as a result of reaction between PA and GPTMS. The leach out of phosphonic acid groups from GPTMS-PA to water was reduced compared with phosphoric acid groups from GPTMS-H3PO4. The proton conductivity of the hybrid membranes increased with phosphonic acid content. The conductivity of GPTMS/PA with a 1/1.05 ratio at 130 °C was 8.7 × 10−2 S cm−1 at 100% relative humidity (RH).  相似文献   

19.
LiFe1−xNdxPO4/C (x = 0-0.08) cathode material was synthesized using a solid-state reaction. The synthesis conditions were optimized by thermal analysis of the precursor and magnetic properties of LiFePO4/C. The structure and electrochemical performances of the material were studied using XRD, FE-SEM, EDS, electrochemical impedance spectroscopy and galvanostatic charge-discharge. The results show that a small amount of aliovalent Nd3+ ion-dopant substitution on Fe2+ ions can effectively reduce the particle size of LiFePO4/C. Cell parameters of LiFe1−xNdxPO4 (x = 0.04-0.08) were calculated, and the results showed that LiFe1−xNdxPO4/C had the same olivine structure as LiFePO4. LiFe0.4Nd0.6PO4/C delivers the discharge capacity of 165.2 mAh g−1 at rate of 0.2 C and the capacity retention rate is 92.8% after 100 cycles. Charge-transfer resistance decreases with the addition of glucose and Nd3+ ions. Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) was synthesized and PZS nanorods were used as a carbon source to coat LiFePO4. All of the results show that aliovalent doping substitution of Fe in LiFePO4 is well tolerated.  相似文献   

20.
Physical and electrochemical investigations of vanadium phosphates, Li2xVO(H2−xPO4)2 (0 < x < 2), have been undertaken. H+/Li+ ionic exchange from VO(H2PO4)2 to Li2VO(HPO4)2 leads to grain decrepitation. Further ionic exchange toward formation of Li4VO(PO4)2 lowers the symmetry. As inferred from potentiodynamic cycling correlated to ex situ and in situ X-ray diffraction (XRD), the system Li/Li4VO(PO4)2 shows several phase transformations that are associated with thermodynamical potential hysteresis that span from roughly 15 mV to more than 1.8 V. Small hysteresis are associated with topotactic reactions and with VV/VIV and VIII/VII redox couples. Large potential hysteresis values (>1 V) were observed when oxidation of VIII to VIV is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号