首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Composites Part A》2002,33(4):483-493
The effect of resin and fibre properties on composite impact, compression after impact (CAI) and mode II energy release rate (GIIC) performance has been studied. Impact events were instrumented to record values of Pc, the critical load for initiation of impact damage. Impact response of the laminates was strongly influenced by the fracture toughness of the resin. In contrast, use of high strength and high stiffness fibres did not improve the resistance to impact. The differences in impact and CAI response of the laminates were largely a consequence of the impact damage created at the damage threshold, Pc, rather than of the differences in delamination growth. As a strong correlation was found between GIIC values measured by delamination tests, and those calculated from measurements of Pc, it is suggested that instrumented impact testing may be a more convenient way of determining GIIC in CFRP laminates than delamination tests.  相似文献   

2.
This paper presents results from an experimental study of the effect of rate on the Mode II interlaminar fracture toughness, GIIC, in graphite/PEEK (APC-2) and graphite/epoxy (AS4/3501-6) laminates. The end notched flexure test geometry was employed for Mode II experiments which were performed at room temperature over a range of crosshead speeds from 4·2 × 10−6 to 9¢2 × 10−2 mc−1. The APC-2 material exhibited ductile crack growth at low rates and brittle crack growth at high rates. The change in fracture mechanism resulted in a decrease in GIIC from 1·0 to 0·40 kJ m−2 at the upper range of test rates. The AS4/3501-6 material exhibited brittle crack growth at all rates. The GIIC values also decreased at higher test rates from 0·46 to 0·06 kJ m−2.  相似文献   

3.
《Composites Part B》2013,45(1):242-247
Bamboo is a kind of biological composites reinforced by unidirectional long fiber. Once there exists crack, the propagation of delamination is controlled by the interlaminar fracture toughness instead of by strength. In this paper, the end notched flexure (ENF) beam specimen was used to test the Mode II interlaminar fracture toughness GIIC along grain of Moso bamboo internode and the fracture surface was analyzed. The results were obtained that the Mode II interlaminar fracture toughness GIIC calculated by the experiment parameter substitution method was more accurate and the value was 1303.18 J/m2 (coefficient of variation = 8.96%) which was about three times higher than the value of Mode I interlaminar fracture toughness; the crack propagation of Mode II interlaminar fracture was mainly self-similar cracking, but the fracture surface was rougher. Ground tissue in the zone of Mode II crack propagation was characterized by hackle shearing deformation. The SEM photos showed that ground tissue separated from fiber along middle lamella under shear stress and as the increasing of the dislocation of upper and lower layer, the thin-walled ground tissue would fracture transversely by tension, while to thick-walled fiber cell, only middle lamella and primary wall were torn then debonded, fragments remained.  相似文献   

4.
A novel pre-preg coating method was used to improve the interlaminar fracture toughness in carbon fibre epoxy composite laminates, using reactive liquid rubber. The Epoxy Terminated Butadiene Nitrile (ETBN) liquid rubber incorporated between pre-pregs using automatic draw bar coating technique. Experimental test results reveal that by adding ETBN in small quantities in the range of 15.55–22.66 g/m2, inter laminar critical energy release rates (GIC and GIIC) can be improved up to 140% in mode-I loadings and 32% in mode-II loadings respectively. It was confirmed that the effect of ETBN rubber concentration in carbon epoxy pre-preg system on interlaminar fracture toughness under mode-I and mode-II loadings, was discussed by on the bases of fractographic observations and mechanism considerations using SEM.  相似文献   

5.
The fracture behaviour of two toughened epoxy composite systems was investigated using various microscopy techniques. The Mode I delamination fracture toughness,G IC, Mode II delamination fracture toughness;G IIC, and compression after impact (CAI) strength of these model composite systems were also measured. Under Mode I fracture, it was found that these composites exhibit nearly identical toughening mechanisms to those of the rubber-modified neat resins. The composites differ primarily in having smaller damage zones than the neat resin equivalents. Under Mode II fracture, the typical hackles were found to initiate from inside the resin-rich interlaminar region due to the presence of the toughener particles. The CAI strength, based on the present study as well as the work conducted by others, appeared to be related to, but not necessarily strongly dependent on, the interlaminarG IC andG IIC, the thickness of the interlaminar resin-rich region, and the type of the interlaminar toughener particles. Approaches for improving theG IC,G IIC, and CAI strength of high-performance toughened composites are discussed.  相似文献   

6.
The previously developed micromechanical approaches for the analysis of transverse cracking and induced delamination are limited for laminates with specific lay-ups such as cross-ply and specific loading conditions. In this paper a new micromechanical approach is developed to overcome such shortcomings. For this purpose, a unit cell in the ply level of composite laminate including transverse cracking and delamination is considered. Then, the governing equations for the stress and displacement fields of the unit cell are derived. The obtained approximate stress field is used to calculate the energy release rate for the propagation of transverse cracking and induced delamination. To show the capability of the new method, it is employed for the analyses of general laminates with [0/90]s, [45/−45]s, [30/−30]s and [90/45/0/−45]s lay-ups under combined loadings to calculate the energy release rate due to the transverse cracking and induced delamination. It is shown that the obtained energy release rates for transverse cracking and delamination initiation are in good agreement with the available results in the literature and finite element method. Furthermore, the occurrence priority of further transverse cracks and/or delamination at each damage state of the laminates will be discussed.  相似文献   

7.
The two-dimensional and three-dimensional parametric finite element analysis (FEA) of composite flat laminates with two through-the-width delamination types: 04/(±θ)6//04 and 04//(±θ)6//04 (θ = 0°, 45°, and “//” denotes the delaminated interface) under compressive load are performed to explore the effects of multiple delaminations on the postbuckling properties. The virtual crack closure technique which is employed to calculate the energy release rate (ERR) for crack propagation is used to deal with the delamination growth. Three typical failure criteria: B-K law, Reeder law and Power law are comparatively studied for predicting the crack propagation. Effects of different mesh sizes and pre-existing crack length on the delamination growth and postbuckling properties of composite laminates are discussed. Interaction between the delamination growth mechanisms for multiple cracks for 04//(±θ)6//04 composite laminates is also investigated. Numerical results using FEA are also compared with those by existing models and experiments.  相似文献   

8.
The application of peel tests for the measurement of adhesive fracture toughness of metal-polymer laminates is reviewed and the merits of a mandrel peel method are highlighted. The mandrel method enables a direct experimental determination of both adhesive fracture toughness (GA) and the plastic bending energy (GP) during peel, whilst other approaches require a complex calculation for GP. In this method, the peel arm is bent around a circular roller in order to develop a peel crack and an alignment load attempts to ensure that the peel arm conforms to the roller.The conditions for peel arm conformance are thoroughly investigated and the theoretical basis for conformation are established. Experimental investigations involve the study of the roller size (radii in the range 5-20 mm are used), the peel arm thickness (varied from 0.635 to 2.0 mm) and the magnitude of the alignment load. In addition, the plane of fracture is studied since fractures can vary from cohesive to interfacial and this has a profound influence on the value of GA and on interpretation of results.A test protocol for conducting mandrel peel is developed such that the roller size for peel arm conformance can be established from preliminary fixed arm peel tests.The work is conducted on two epoxy/aluminium alloy laminates suitable for aerospace applications. Comparative results of adhesive fracture toughness from mandrel peel and multi-angle fixed arm peel are made with cohesive fracture toughness from a tapered double cantilever beam test.  相似文献   

9.
The effects of interfacial treatment of glass fibres in glass/epoxy composites were studied through Mode I delamination fracture toughness tests using a double cantilever beam specimen. The treatment of glass fibres with two similar silane coupling agents has been shown to improve the mechanical properties of the composite as a function of the type of coupling agent, -aminopropyltriethoxysilane (APS) and -aminobutyltriethoxysilane (ABS) have similar chemistry, but differ in mobility (molecular motion) at the coupling agent-epoxy interface. The critical energy release rate, G 1c, for the APS-treated composites (0.59±0.05 kJ m–2) was shown to be higher than that of the ABS-treated one (0.37±0.01 kJ m–2) and also the untreated one (0.31±0.02 kJ m–2). In this case, the bulk structural property appears to be a function of the microscopic interfacial properties including the dynamics of the coupling agent layer. Optical characterization of the fracture surfaces reveal delamination at the epoxy-glass interface for the untreated samples, while the ABS- and APS-treated samples showed less interfacial delamination, respectively.  相似文献   

10.
In the present paper the effects of delamination failure of hybrid composite box structures on their crashworthy behaviour will be studied and also their performance will be compared with non-hybrid ones. The combination of twill-weave and unidirectional CFRP composite materials are used to laminate the composite boxes. Delamination study in Mode-I and Mode-II with the same lay-ups was carried out to investigate the effect of delamination crack growth on energy absorption of hybrid composite box structures. The end-loaded split (ELS) and double-cantilever beam (DCB) standard test methods were chosen for delamination studies. In all hybrid composite boxes the lamina bending crushing mode was observed. Regarding the delamination study of hybrid DCB and ELS the variation of the specific energy absorption (SEA) versus summation of GIC and GIIC were plotted to combine the effect of Mode-I and Mode-II interlaminar fracture toughness on the SEA. From this relationship it was found the hybrid laminate designs which showed higher fracture toughness in Mode-I and Mode-II delamination tests, will absorb more energy as a hybrid composite box in crushing process. The crushing process of hybrid composite boxes was also simulated by finite element software LS-DYNA and the results were verified with the relevant experimental result.  相似文献   

11.
The transverse tensile properties, interlaminar shear strength (ILSS) and mode I and mode II interlaminar fracture toughness of carbon fibre/epoxy (CF/EP) laminates with 10 wt% and 20 wt% silica nanoparticles in matrix were investigated, and the influences of silica nanoparticle on those properties of CF/EP laminates were characterized. The transverse tensile properties and mode I interlaminar fracture toughness (GIC) increased with an increase in nanosilica concentration in the matrix resins. However, ILSS and the mode II interlaminar fracture toughness (GIIC) decreased with increasing nanosilica concentration, especially for the higher nanosilica concentration (20 wt%). The reduced GIIC value is attributed to two main competing mechanisms; one is the formation of zipper-like pattern associated with matrix microcracks aligned 45° ahead of the crack tip, while the other is the shear failure of matrix. The ratio of GIIC/GIC decreased with the concentration of silica nanoparticles, comparable with similar CF/EP laminates with dispersed CNTs in matrix. Fractographic studies showed that interfacial failure between carbon fibre and epoxy resin occurred in the neat epoxy laminate, whereas a combination of interfacial failure and matrix failure occurred in the nanosilica-modified epoxy laminates, especially those with a higher nanosilica concentration (20 wt%).  相似文献   

12.
2D C/SiC composite was modified with partial BCx matrix by low pressure chemical vapor infiltration technique (LPCVI), which was named as 2D C/SiC-BCx composite. The flexural fracture behavior, mechanism, and strength distribution of 2D C/SiC-BCx composite are investigated. The results indicate that the flexural strength, fracture toughness, and fracture work are 442.1 MPa, 22.84 MPa m1/2, and 19.2 kJ m−2, respectively. The flexural strength of C/SiC-BCx composite decrease about 20% than that of C/SiC composite. However, the fracture toughness and fracture work increase about 19% and 18.5%, respectively. The properties varieties between C/SiC-BCx composite and C/SiC composite can be attributed to the weak-bonding interface between BCx/SiC matrices according to the results of detailed microstructure analysis. The strength distribution of 2D C/SiC-BCx composite follows as Normal distribution or Weibull distribution with σu = 0, and m = 8.1393. The mean value of flexural strength for 2D C/SiC-BCx composite is 443 MPa obtained by theory calculation, which is consistent with experiment result (442.1 MPa) very well.  相似文献   

13.
Hybrid laminates have been fabricated from randomly oriented jute fibre mats and woven glass fabrics with a common polyster resin matrix. Hand lay up techniques were used to simulate practical production methods in the field. A variety of laminate constructions were mechanically tested and some laminates were in addition assessed for environmental stability. Modified rule of mixtures expressions successfully predicted the tensile properties of the laminates and the jute plies were seen to control the failure of hybrid laminates at about 0.8% strain. Fracture toughness measurements of GIC andK IC indicate that hybrid laminates have maximum toughness (G IC 12 kJ m–2 when jute plies are sandwiched between glass fabric facings. All the hybrid laminates were found to be tough in impact, although here fabric plies used as the laminate core maximize the work of fracture at a value of approximately 45 kJ m–2. Hybrid laminates with jute facings are, as expected, least able to withstand hot moist environments. However, significant moisture uptake by the polyester resin matrix was measured for all laminates. Optical and scanning electron microscopy have been used to explain the mechanical performance and environmental resistance of the hybrid laminates.  相似文献   

14.
A damage constitutive model in conjunction with a 2-D finite element discretization is presented for predicting onset and evolution of matrix cracking and subsequent stiffness reduction of symmetric composite laminates with arbitrary stacking sequence subjected to membrane loads. The formulation uses laminae crack densities as the only state variables, with crack growth driven by both mechanical stress and residual stress due to thermal expansion. The formulation is based on fracture mechanics in terms of basic materials properties, lamina moduli, and critical strain energy release rates GIC and GIIC, only. No additional adjustable parameters are needed to predict the damage evolution. Spurious strain localization and mesh size dependence are intrinsically absent in this formulation. Thus, there is no need to define a characteristic length. Comparison of model results to experimental data is presented for various laminate stacking sequences. Prediction of crack initiation, evolution, and stiffness degradation compare very well to experimental data.  相似文献   

15.
This paper examines the effect of mode I interlaminar fracture toughness (GIc) on the specific energy absorption of stitched glass/polyester composite cylindrical shells under axial compression. The laminated composite cylindrical shells used as energy absorbers, absorb large amount of impact energy during collision. Since mode I delamination in the thin wall of axially collapsed shell is one of the major energy absorbing modes, contribution of GIc to specific energy absorption (SEA) of tubes is significant during collision. The GIc values are determined through double cantilever beam (DCB) test with stitched and unstitched planar specimens. The four and six-layered cylindrical tubes of D/t ratios 29.27 and 20, respectively, with GIc values ranging from 1.68 to 8.09 kJ/m2 are prepared by stitching and are subjected to quasi-static axial compression. Increasing GIc up to certain value leads to controlled progressive crushing, which is a good energy absorbing mechanism, beyond which failure is uncontrolled. Cylindrical tubes having GIc up to 6.34 kJ/m2 leads to 40% increase in SEA for four-layered tubes and 6.6% for six-layered tubes comparing with the corresponding unstitched tubes. When the tubes have GIc of 8.09 kJ/m2, four-layered tubes undergo unstable failure, but six-layered tubes undergo stable progressive crushing with 22% increase in SEA. Transition from stable to unstable failure depends upon the thickness of tubes. An analytical model is developed based on energy approach to predetermine the steady state mean crush load of cylindrical composite shells under axial compression. The model results are validated by experimental results, and show good agreement.  相似文献   

16.
The fracture behavior of a composite/adhesive/steel bonded joint was investigated by using double cantilever beam specimens. A starter crack is embedded at the steel/adhesive interface by inserting Teflon tape. The composite adherend is a random carbon fiber reinforced vinyl ester resin composite while the other adherend is cold rolled steel. The adhesive is a one-part epoxy that is heat cured. The Fernlund-Spelt mixed mode loading fixture was employed to generate five different mode mixities. Due to the dissimilar adherends, crack turning into the adhesive (or crack kinking) associated with joint failure, was observed. The bulk fracture toughness of the adhesive was measured separately by using standard compact tension specimens. The strain energy release rates for kinking cracks at the critical loads were calculated by a commercial finite element analysis software ABAQUS in conjunction with the virtual crack closure technique. Two fracture criteria related to strain energy release rates were examined. These are (1) maximum energy release rate criterion (Gmax) and, (2) mode I facture criterion (GII = 0). They are shown to be equivalent in this study. That is, crack kinking takes place at the angle close to maximum G or GI (also minimum GII, with a value that is approximately zero). The average value of GIC obtained from bulk adhesive tests using compact tension specimens is shown to be an accurate indicator of the mode I fracture toughness of the kinking cracks within the adhesive layer. It is concluded that the crack in tri-material adhesively bonded joint tends to initiate into the adhesive along a path that promotes failure in pure mode I, locally.  相似文献   

17.
An effective strategy to improve the mode I and mode II interlaminar fracture toughness (G IC and G IIC ) of unidirectional carbon fiber/epoxy (CF/E) laminates using a hybrid combination of multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) is reported. Double cantilever beam (DCB) and end notched flexure (ENF) tests were conducted to evaluate the G IC and G IIC of the CF/E laminates fabricated with sprayed MWCNTs, GO and MWCNTs/GO hybrid. Scanning electron microscopy was employed to observe the fracture surfaces of tested DCB and ENF specimens. Experimental results showed the positive effect on the G IC and G IIC by 17% and 14% improvements on CF/E laminates with 0.25 wt.% MWCNTs/GO hybrid content compared to the neat CF/E. Also, the interlaminar shear strength value was increased for MWCNTs/GO-CF/E laminates. A synergetic effect between MWCNTs and GO resulted in improved interlaminar mechanical properties of CF/E laminates made by prepregs.  相似文献   

18.
This paper reports results from the mode II testing of adhesively-bonded carbon-fibre-reinforced composite substrates using the end-loaded split (ELS) method. Two toughened, structural epoxy adhesives were employed (a general purpose grade epoxy-paste adhesive, and an aerospace grade epoxy-film adhesive). Linear Elastic Fracture Mechanics was employed to determine values of the mode II adhesive fracture energy, GIIC for the joints via various forms of corrected beam theory. The concept of an effective crack length is invoked and this is then used to calculate values of GIIC. The corrected beam theory analyses worked consistently for the joints bonded with the epoxy-paste adhesive, but discrepancies were encountered when analysing the results of joints bonded with the epoxy-film adhesive. During these experiments, a microcracked region ahead of the main crack was observed, which led to difficulties in defining the true crack length. The effective crack length approach provides an insight into the likely errors encountered when attempting to measure mode II crack growth experimentally.  相似文献   

19.
This paper addresses a new method based on the combination of mechanical behavior and acoustic emission (AE) information of composite materials during mode I delamination. The method is based on a special purpose function, called sentry function, which is defined as the logarithm of the ratio between mechanical energy and acoustic energy (f = Ln(Es/Ea)). The sentry function is used to study the delamination process and to evaluate the delamination fracture toughness in mode I. The relationship between cumulative fracture toughness energy release rate (GI) and the integral of the sentry function during crack propagation showed a transition point with two sensitive regions below and above it. This behavior can be followed to obtain the critical strain energy release rate value (GIc). Results obtained by means of the sentry function are compared with results obtained by a methodology proposed by other authors.  相似文献   

20.
An experimental study has been undertaken to characterize the delamination behavior and tensile properties of interply hybrid laminated composites reinforced by interlock weft-knitted and woven glass fiber preform fabrics. The hybrid composites, comprising the alternate layers of interlock and uniweave fabrics, were compared to interlock knitted (only) and uniweave (only) composites with respect to delamination and tensile performances. Mode-I double cantilever beam and mode-II end-notched flexure tests were carried out to assess the interlaminar fracture toughness using aluminum-strip stiffened specimens. The mode-I and mode-II interlaminar fracture toughness values, G IC and G IIC, for the hybrid composite were about three and two times higher than that for the uniweave composite, respectively. The tensile strength and modulus of the hybrid composite were 315 MPa and 12.8 GPa in the wale direction, respectively, demonstrating that the strength and modulus were found to be slightly lower than those of the uniweave composite, and significantly improved in comparison with the interlock knitted composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号