首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the goal of improving the physico-chemical performance of fish gelatin-based films, composite films were prepared with increasing concentrations of chitosan (Ch) (100G:0Ch, 80G:20Ch, 70G:30Ch, 60G:40Ch and 0G:100Ch, gelatin:Ch), and some of their main physical and functional properties were characterised. The results indicated that the addition of Ch caused significant increase (p < 0.05) in the tensile strength (TS) and elastic modulus, leading to stronger films as compared with gelatin film, but significantly (p < 0.05) decreased the elongation at break. Ch drastically reduced the water vapour permeability (WVP) and solubility of gelatin films, as this decline for the blend film with a 60:40 ratio has been of about 50% (p < 0.05). The light barrier measurements present low values of transparency at 600 nm of the gelatin–chitosan films, indicating that films are very transparent while they have excellent barrier properties against UV light. The structural properties investigated by FTIR and DSC showed a clear interaction between fish gelatin and Ch, forming a new material with enhanced mechanical properties.  相似文献   

2.
Physical, chemical and antimicrobial properties of fish gelatin films with different concentrations of ethyl lauroyl arginate (LAE) were studied. Optical properties of film-forming solution did not vary with increased LAE content. However, pH and surface tension increased. The incorporation of LAE into the formulation increased moisture and solubility of the films. In addition, the presence of LAE affected mechanical properties, making films stronger and more flexible; it had no effect on water vapour permeability. Finally, films with LAE significantly increased antimicrobial properties against Listeria innocua, Shewanella putrefaciens and Pseudomonas fluorescens, but not against Aeromonas hydrophila. These antimicrobial films could be used as an alternative technology for extending shelf-life of fresh fish products.  相似文献   

3.
The addition of nisin into a gelatin matrix can change properties of the film. The aim of this work was to develop gelatin-based films containing different nisin concentrations in order to study their influence on the film's antimicrobial and physical properties and their rheological properties as a film-forming solution (FFS). The FFS was characterised by rheological assays, and the gelatin-based active films were characterised and assessed by the effects of nisin concentrations on their various properties, including antimicrobial activity. Nisin's concentration affected not only its viscoelastic properties of FFS but also its film solubility in water, film surface roughness and light barrier. The addition of nisin also slightly modified the water contact angle and the mechanical properties of the gelatin films. Finally, the films demonstrated activity against Staphylococcus aureus and Listeria monocytogenes at concentrations above 56 mg of nisin g−1 of gelatin.  相似文献   

4.
This study investigated the properties of different types of gelatin films from solutions of varying gelatin concentrations (4–8 wt %). Gelatin derived from beef, pork and fish skin sources was used to manufacture films using a casting approach. Mechanical properties of gelatin films, water vapour permeability (WVP), oxygen permeability, oil permeability and aqueous solubility of films were evaluated. FTIR spectroscopy was utilized to assess the composition of various gelatin sources so as to determine differences in composition of these sources and ultimately, in overall functionality. High concentration gelatin films had good mechanical properties with tensile and puncture strengths being particularly improved. Gelatin films manufactured from fish skin had the lowest WVP values for each concentration used. All gelatin films possessed excellent barriers to oxygen and oil. Films derived from pork gelatin exhibited lowest water solubility compared to those formed using beef and fish gelatin sources, regardless of the concentrations used. FTIR spectra showed that plasticizer and gelatin were well mixed and interacted well together. The use of higher concentrations of gelatin had the effect of increasing the wavenumber of amide-A in films due to greater interaction occurring between gelatin functional groups.  相似文献   

5.
Casting method was used to prepare bovine gelatin based bio-nanocomposite films with halloysite nanoclay and nano-SiO2 as the reinforcing materials. The composition included gelatin with 20% (w/w) of glycerol (as plasticizer) compounded with halloysite nanoclay and nano-SiO2 (0%, 2%, 3%, 4%, 5% w/w), respectively. Both types of nanocomposite films showed better mechanical and water solubility than the pristine gelatin films. On comparison with the control, increase in the nanoparticles content resulted in higher tensile strength (9.19 to 13.39 and 12.22 MPa in nanoclay and nano-SiO2, respectively) and elastic modulus (1.32 to 2.99 and 3.02 MPa% in nanoclay and nano-SiO2, respectively) with lower elongation at break (80.80 to 55.72 and 40.31% in nanoclay and nano-SiO2, respectively) and water solubility (85.99 to 69.67 and 69.59% in nanoclay and nano-SiO2, respectively). Even though a decrease in water vapor permeability was recorded, it was statistically non-significant (1.94 to 1.50 and 1.73 g mm/m2 h kPa in nanoclay and nano-SiO2, respectively). Studies on the heat sealing and peel seal test, conducted to determine the seal strength of the nanocomposite films, revealed lower seal strength compared to control (739.59 to 304.95 and 397.85 N/m in nanoclay and nano-SiO2, respectively). Between the two nanomaterials used, halloysite nanoclay showed the best results in terms of mechanical properties. The results obtained support the concept of nanocomposite technology and can be employed to improve the barrier and mechanical properties of bovine gelatin films with high potential to be used for food packaging purposes.  相似文献   

6.
Gelatin films were prepared from gelatin solutions (10% w/v) containing Zataria multiflora essential oil (ZMO, 2, 4, 6 and 8% w/w of gelatin). Scanning electron microscopy observations indicate that ZMO droplets were well dispersed in the film matrix. Water solubility, water swelling, water uptake, water vapor permeability, tensile strength, elongation at break and Young's modulus for gelatin films were 27 ± 0.8%, 391 ± 11%, 135 ± 5%, 0.22 ± 0.014 g mm/m2 kPa h, 4.4 ± 0.4 MPa, 125 ± 7% and 8.8 ± 0.4 MPa, respectively. Incorporation of ZMO into gelatin films caused a significant decrease in swelling and water uptake and increase in solubility and water vapor permeability, a significant decrease in tensile strength, increase in elongation at break, decrease in Young's modulus of the films, dose-dependently. Gelatin/ZMO showed UV–visible light absorbance/transmission ranging from 280 to 480 nm with maximum absorbance at 420 nm. Gelatin films exhibited very low antioxidant activity while, gelatin/ZMO films exhibited excellent antioxidant properties. The gelatin/ZMO films also exhibited excellent antibacterial properties against both Gram-positive and Gram-negative bacteria. Our results suggested that the gelatin/ZMO films could be used as an active film due to its excellent antioxidant and antimicrobial properties for food packaging applications.  相似文献   

7.
With the purpose to improve the physico-chemical performance of plain gelatin and chitosan films, compound gelatin–chitosan films were prepared. The effect of the gelatin origin (commercial bovine-hide gelatin and laboratory-made tuna-skin gelatin) on the physico-chemical properties of films was studied. The dynamic viscoelastic properties (elastic modulus G′, viscous modulus, G″ and phase angle) of the film-forming solutions upon cooling and subsequent heating revealed that the interactions between gelatin and chitosan were stronger in the blends made with tuna-skin gelatin than in the blends made with bovine-hide gelatin. As a result, the fish gelatin–chitosan films were more water resistant (∼18% water solubility for tuna vs 30% for bovine) and more deformable (∼68% breaking deformation for tuna vs 11% for bovine) than the bovine gelatin–chitosan films. The breaking strength of gelatin–chitosan films, whatever the gelatin origin, was higher than that of plain gelatin films. Bovine gelatin–chitosan films showed a significant lower water vapour permeability (WVP) than the corresponding plain films, whereas tuna gelatin–chitosan ones were only significantly less permeable than plain chitosan film. Complex gelatin–chitosan films behaved at room temperature as rubbery semicrystalline materials. In spite of gelatin–chitosan interactions, all the chitosan-containing films exhibited antimicrobial activity against Staphylococcus aureus, a relevant food poisoning. Mixing gelatin and chitosan may be a means to improve the physico-chemical performance of gelatin and chitosan plain films, especially when using fish gelatin, without altering the antimicrobial properties.  相似文献   

8.
The gelatin sources have become a controversial issue with regard to religious and health concern. Thus, the aims of this study were to develop and evaluate the efficiency of polyclonal antibodies against peptide immunogen of collagen α2 (I) chain for determination of gelatin sources in confectionery products by competitive indirect enzyme‐linked immunosorbent assay (ELISA). Collagen α2 (I) chain protein showed resistance against heat treatment and detectable in certain commercial products when analysed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS‐PAGE). The established ELISA exhibited low cross‐reactivity to fish and chicken gelatin. The IC50 value was 0.39 μg mL?1, and the limit of detection (IC10) was 0.05 μg mL?1. There were no false‐positive results from forty‐eight commercially processed products. The present method is useful for determination of gelatin in confectionery products.  相似文献   

9.
Physical and mechanical properties of edible films based on blends of sago starch and fish gelatin plasticized with glycerol or sorbitol (25%, w/w) were investigated. Film forming solutions of different ratios of sago starch to fish gelatin (1:0, 2:1, 3:1, 4:1, and 5:1) were used and cast at room temperature. Amylose content of sago starch was between 32 and 34% and the protein content of the fish gelatin was found to be 81.3%. The findings of this study showed that the addition of fish gelatin in starch solutions has a significant effect (p < 0.05), resulting in films with lower tensile strength (TS) and higher water vapor permeability (WVP). On the other hand, increasing protein content (from 10.9% to 21.6%) in film samples plasticized with sorbitol showed significantly lower (p < 0.05) TS but no trend was observed in % elongation-at-break (EAB) and no differences in WVP. However, TS decreased with higher protein content in the samples when either plasticizers were used in general, but no significance differences was observed among the samples (p < 0.05) with glycerol with exception to film with high protein content (21.6%) only and no trend was observed in % EAB among samples as well. Significant difference (p < 0.05) was observed in TS and viscosity between different formulations with sorbitol. The morphology study of the sago starch/fish gelatin films showed smoother surfaces with decreasing protein in the samples with either plasticizer. DSC scans showed that plasticizers and protein content incorporated with sago starch films reduced the glass transition temperature (Tg) and melting temperature (Tm) and the melting enthalpy (ΔHm). In this study, observation of a single Tg is an indication of the compatibility of the sago starch and fish gelatin polymers to form films at the concentration levels used.  相似文献   

10.
In order to provide gelatin films with antioxidant capacity, two sulphur-free water-insoluble lignin powders (L1000 and L2400) were blended with a commercial fish-skin gelatin from warm water species at a rate of 85% gelatin: 15% lignin (w/w) (G–L1000 and G–L2400), using a mixture of glycerol and sorbitol as plasticizers. The water soluble fractions of G–L1000 and G–L2400 films were 39.38 ± 1.73% and 46.52 ± 1.66% respectively, rendering radical scavenging capacity (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, ABTS assay)) of 27.82 ± 2.19 and 15.31 ± 0.88 mg vitamin C equivalents/g film, and ferric ion reducing ability (FRAP assay) of 258.97 ± 8.83 and 180.20 ± 5.71 μmol Fe2+ equivalents/g film, respectively. Dynamic oscillatory test on film-forming solutions and Attenuated Total Reflectance (ATR)-FTIR spectroscopy study on films revealed strong lignin-induced protein conformational changes, producing a noticeable plasticizing effect on composite films, as deduced from the study of mechanical (traction and puncture tests) and thermal properties (Differential Scanning Calorimetry, DSC). The gelatin films lose their typical transparent and colourless appearance by blending with lignin; however, the resulting composite films gained in light barrier properties, which could be of interest in certain food applications for preventing ultraviolet-induced lipid oxidation. Lignin proved to be an efficient antioxidant at non-cytotoxic concentrations, however, no remarkable antimicrobial capacity was found.  相似文献   

11.
The aim of this study was to determine the properties of gelatin films incorporated with thymol. Gelatin films were prepared from gelatin solutions (10% w/v) containing thymol (1, 2, 4, and 8% w/w), glycerol (25% w/w) as plasticizer, and glutaraldehyde (2% w/w) as cross‐linker. Cross‐likened films showed higher tensile strength, higher elongation at break, lower Young's modulus, lower water solubility, lower swelling, lower water uptake, and lower water vapor permeability. Incorporation of thymol caused a significant decrease in tensile strength, increase in elongation at break, decrease in Young's modulus, increase in water solubility, decrease in swelling and water uptake, and increase in water vapor permeability slightly. The films incorporated with thymol exhibited excellent antioxidant and antibacterial properties. The antibacterial activity of the films containing thymol was greatest against Staphylucoccus aureus followed by Bacillus subtilis followed by Escherichia coli and then by Pseudomonas aeruginosa. Thus, gelatin films‐containing thymol can be used as safe and effective source of natural antioxidant and antimicrobial agents with the purpose of evaluating their potential use as modern nano wound dressing. Practical Application : This study clearly demonstrates the potential of gelatin films incorporated with thymol as natural antioxidant and antimicrobial nano film. Such antimicrobial films exhibited excellent mechanical, physical, and water activities and could be used as antibacterial nano wound dressing against wounds burn pathogens.  相似文献   

12.
The effects of nanorod-rich zinc oxide (ZnO–nr) on the flow properties of bovine gelatin solution and on the sorption isotherm, antimicrobial, and physchochemical properties of gelatin films were investigated. ZnO–nr was incorporated into gelatin solutions at different concentrations (0.01, 0.02, 0.03, and 0.05 g/g dried gelatin). The introduction of low ZnO–nr concentrations (0.05 g/g dried gelatin) to gelatin solutions significantly increased the viscosity of the solution from 9 to 11.9 mPa s and decreased the permeability of the films to water vapor from 8.9 × 10−11 to 1.78 × 10−11 (g m−1 s−1 Pa−1). Solubility in water decreased from 30% to 20%, and monolayer water content of the films decreased from 0.13 to 0.10 (g water/g dried solid), whereas their contact angle increased from 45° to 85° with increasing ZnO–nr concentration from 0 to 0.05 g/g dried gelatin. The ZnO–nr gelatin films had very low UV transmittance and were able to absorb more than 50% of the near-infrared spectra. These films showed excellent antimicrobial activity against Staphylococcus aureus. These properties suggest that ZnO–nr can be potentially used as fillers in gelatin-based films for active packaging materials in the pharmaceutical and food packaging industries.  相似文献   

13.
Essential oils such as thymol are added to food packaging film to obtain active films with antimicrobial and antioxidant properties. However, thymol is insoluble in water, and release rate of thymol is usually too fast. Therefore, a need exists to increase thymol solubility and to deliver thymol in a controlled manner from film matrix to food surface. In this study, spray dried inclusion complexes of β-cyclodextrin/thymol (1:1 molar ratio) was incorporated into gelatin solution to obtain active gelatin films. Both inclusion complexes and active films showed sustained release of thymol. Physical properties and thymol release kinetics were evaluated for active films. For gelatin films with 8.25% (mass ratio) inclusion complexes, complete thymol release took 235 h, compared with 38 h for thymol release from inclusion complexes. The diffusion coefficient reached 2.04?×?10?15 m2 s?1.  相似文献   

14.
Active biodegradable films based on agar and agar–fish gelatin were developed by the incorporation of green tea aqueous extract to the film forming solution. The effect of the partial replacement of agar by fish skin gelatin as well as the addition of the green tea extract on the physical properties of the resultant films was evaluated. Special attention was given to the release of antioxidant and antimicrobial compounds from the agar film matrices with and without gelatin. Agar–gelatin films were less resistant and more deformable than agar films. The inclusion of green tea extract decreased tensile strength and elongation at break in both agar and agar–gelatin films. Water vapour permeability and water resistance was not affected either by the replacement of agar by gelatin or the addition of green tea extract, but the water solubility noticeably increased in the films containing green tea extract. The presence of gelatin in the agar–green tea matrix film hindered the release of total phenolic compounds, catechins and flavonols in water. As a consequence, the antioxidant power released by the films was lower in the case of films containing gelatin. However, the antimicrobial activity of the films was not affected by the presence of gelatin.  相似文献   

15.
Fish gelatin was plasticized with 20% and 25% glycerol (w/w of gelatin) and used to develop edible films by twin-screw extrusion at 110 and 120 °C followed by compression molding at 80 °C. Tensile and moisture barrier properties and glass transition temperature were then measured and compared with solution-cast films. The films extruded at 110 °C and with 25% glycerol had the highest percent elongation at break of 293 ± 27%. The water vapor permeability values of extruded films (the highest value being 2.9 ± 0.2 g mm h−1 cm−2 Pa−1) were higher than those of solution-cast films while the glass transition temperatures (Tg) of the extruded films were generally lower than those of solution-cast films. Films with 25% glycerol that were extruded at 110 °C had the lowest Tg (2.10 ± 0.31 °C). This investigation showed that extrusion processing followed by compression molding is a feasible method to produce fish gelatin films for commercial applications in a wide range of food products.  相似文献   

16.
A new gelatin-protocatechuic acid (PCA) film with Escherichia coli O157:H7 phage JN01 was developed and characterised. After incorporated with JN01, swelling value, water vapour permeability, water solubility and elongation at break of gelatin-PCA film were not significantly different. The addition of JN01 increased b value and transparency of film, while it decreased L value, a value and tensile strength of film. Moreover, the gelatin-PCA-JN01 film presented antioxidant activity of 60.07%. Furthermore, JN01 could be steadily released from gelatin-JN01 and gelatin-PCA-JN01 films in aqueous solution, and their release rates were 7.56% and 0.12% after 11 h, respectively. The microstructure analysis showed that JN01 particles were clustered and uniformly distributed in film, and the aggregation would be attenuated in the presence of PCA. Meanwhile, E. coli O157:H7 counts were 1.13 log10CFU mL−1 and 0.45 log10CFU mL−1 lower in gelatin-JN01 and gelatin-PCA-JN01 films compared with pure gelatin film in vitro at 4 °C for 24 h, respectively. After stored at 4 °C for 7 days, Escherichia coli O157:H7 counts were 1.00 log10CFU g−1 and 0.80 log10CFU g−1 lower in beef packed with these two gelatin films, compared with beef without gelatin film, respectively. In conclusion, the developed gelatin-PCA-JN01 film has potential application in food preservation.  相似文献   

17.
ABSTRACT:  Fish skins are rich in collagen and can be used to produce food-grade gelatin. Films cast from fish-skin gelatins are stable at room temperature and can act as a barrier when applied to foods. Lysozyme is a food-safe, antimicrobial enzyme that can also produce gels and films. When cold-water, fish-skin gelatin is enhanced with lysozyme, the resulting film has antimicrobial properties. The objective of this study was to characterize the effect on strength and barrier properties of lysozyme-enhanced fish-skin gelatin gels and films, and evaluate their activity against potential spoilage bacteria. Solutions containing 6.67% fish-skin gelatin were formulated to contain varying levels of hen-egg-white lysozyme. Gels were evaluated for strength, clarity, and viscoelastic properties. Films were evaluated for water activity, water vapor permeability, and antimicrobial barrier capabilities. Fish-skin gels containing 0.1% and 0.01% lysozyme had pH (4.8) and gelling-temperatures (2.1 °C) similar to lysozyme-free fish-skin gelatin controls. However, gel strength decreased (up to 20%). Turbidities of gels, with or without lysozyme, were comparable at all concentrations. Films cast with gelatin containing lysozyme demonstrated similar water vapor permeabilities and water activities. Lysozyme was still detectable in most fish gelatin films. More antimicrobial activity was retained in films cast with higher lysozyme concentrations and in films where lysozyme was added after the gelatin had been initially heated. These results suggest that fish-skin gelatin gels and films, when formulated with lysozyme, may provide a unique, functional barrier to increase the shelf life of food products.  相似文献   

18.
Textural and release characteristics of three types of core–shell macrocapsules, fabricated by electro‐coextrusion with agar only, an agar/fish gelatin (80:20) mixture or an agar/κ‐carrageenan (80:20) mixture at a total hydrocolloid concentration of 2% (w/v) and different applied voltages (0–8 kV), were investigated. The capsule diameter (1.1–1.6 mm) and shell thickness (15.1–38.4 μm) decreased with increasing applied voltage. Mixing agar with fish gelatin or κ‐carrageenan reduced slightly the capsule hardness and breaking energy; however, the capsule integrity was solid enough for safe handling. The release of core (olive oil containing a dye) in boiling water followed first‐order kinetics and was retarded significantly when κ‐carrageenan was mixed with agar but accelerated with fish gelatin addition (only 2.5–3.4 min for the release of 80% of the core). The agar/fish gelatin macrocapsules can be applied in precooked foods, because they are mechanically stable and can rapidly release the core upon contact with hot water.  相似文献   

19.
In this study, starch-based films incorporating metal oxide (MO2) nanoparticles (NPs) of TiO2 and SiO2 (at a concentration of 1 to 4 wt. %) were produced by solution casting method. In order to exhibit antimicrobial properties, MO2 NPs were modified by synthesizing silver (Ag) ions over the NPs using cationic adsorption method. Ag ions were then reduced to metallic Ag by sodium borohydride solution. Scanning electron microscopy showed a smooth surface for the pure starch film. Incorporating MO2@Ag NPs in the films increased surface roughness with agglomerated NPs within starch matrix. Energy dispersive X-ray analysis exhibited a uniform dispersion of Ag-loaded MO2 NPs, which increases surface contact between these NPs and the biopolymer matrix leading to improved physical and mechanical properties of the resulting films. With increasing in the NPs concentrations, the tensile strength and elongation at break % of the films increased and decreased, respectively. Incorporating MO2@Ag NPs into starch matrix decreased solubility in water and water vapor permeability of the obtained films, and significantly inhibited the growth of Escherichia coli and Staphylococcus aureus. The most antibacterial effect was obtained for the films containing higher weight concentrations of Ag-loaded SiO2-NPs.  相似文献   

20.
为改善鱼鳞明胶膜的性能,测定添加明胶质量的0%、25%、50%、75%、100%桔子精油的可食膜的厚度、机械性能、水溶性、水蒸汽透过率、色泽、透明度和透光率、热性能、红外光谱和抑菌活性。结果表明:随着精油浓度的增加,鱼鳞明胶膜的厚度、断裂伸长率增加,拉伸强度、透光率、水溶性降低,水蒸汽透过率呈现先增加后降低的趋势;差示扫描量热法(DSC)和傅里叶变换红外光谱(FTIR)分析结果表明,鱼鳞明胶分子与桔子精油的部分成分发生相互作用,在一定程度上改善了明胶膜的热稳定性;桔子精油的添加还赋予了鱼鳞明胶膜抑菌作用。综合评价得出75%质量浓度的桔子精油添加量对鱼鳞明胶膜各项性能优化效果最好,本实验结果可为生产高性能的鱼鳞明胶膜提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号