首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Aguirre  R. Borneo  A.E. León 《LWT》2011,44(9):1853-1858
Triticale flour proteins based films were developed. Solubility in water, water vapor permeability (WVP), and mechanical properties of triticale films are presented. The effects of thermal treatments and glycerol concentration were also evaluated. WVP values were in the range 0.10-4.22 × 10−10 g m−1 s−1 Pa−1. Tensile strength (TS) and percentage of elongation (%E) were in the range 2.9-0.20 MPa and 250-110% respectively. Total soluble matter (TSM), WVP, and %E decreased with the increase in the curing temperature. More plasticized films presented greater TSM, WVP, %E and lower values of TS. At a giving temperature (T) and glycerol concentration, an increase in relative humidity (RH) resulted in higher values of TSM, WVP, %E and lower TS values. It was observed that in films with the same treatments and conditioning, WVP increased with the increase in measurement temperature. Triticale proteins showed suitable film-forming capacity for the formulation of biodegradable films.  相似文献   

2.
Jang Woo Park  Seung Yong Cho 《LWT》2008,41(4):692-700
Gelatin-based edible films were produced by extruding hot melt of gelatin-based resins through a die with slot orifice and followed by heat-pressed method. The resins were plasticized with glycerol, sorbitol and the mixture of glycerol and sorbitol (MGS). The effect of type of plasticizer on extruded and heat-pressed (EHP) film-forming capacity was studied, and the mechanical and water barrier properties of resulting EHP gelatin films were compared with those of gelatin films prepared by solution casting method. Stretchable films were formed when glycerol or MGS were used as plasticizer, whereas resins plasticized with sorbitol were extruded in non-stretchable sheets. Glycerol plasticized gelatin film showed the highest flexibility and transparency among the EHP films tested. Tensile strength (TS), elongation (E) and water vapor permeability (WVP) of glycerol plasticized EHP gelatin films were 17.3 MPa, 215.9% and 2.46 ng m/m2 s Pa, respectively, and EHP gelatin films had higher E values, lower TS values and higher WVP values compared to the glycerol plasticized cast gelatin films.  相似文献   

3.
The sensory attributes, mechanical, water vapour permeability (WVP) and solubility properties of cassava starch and soy protein concentrate (SPC)‐based edible films of varying levels of glycerol were studied. Addition of SPC and glycerol up to 30% and 20%, respectively, reduced stickiness and improved colour and appearance of the films. Tensile strength (TS), elastic modulus (EM) and elongation at break (EAB) of films increased, while film solubility (FS) and WVP decreased with SPC and glycerol up to 50% and 20% level, respectively, ranging from 20.33 to 26.94 MPa (TS), 41.33 to 72.76 MPa (EM), 7.90 to 12.28 MPa (EAB), 15.07 to 31.90% (FS) and 2.62 to 4.13 g H2O mm m?2 day kPa (WVP). The TS, EAB and WVP were higher for the biofilms than for low‐density polyethylene and cellophane films.  相似文献   

4.
Ho Jin Kang 《LWT》2010,43(6):903-105
Edible films were developed from potato peel. High-pressure, gamma-ray, and ultrasound were applied to potato peel solutions to break down biopolymer particles in the solution small enough to allow for biopolymer film formation. Film properties, including moisture barrier and tensile properties, color, and microstructures, were investigated from the films formed with different concentrations of plasticizer (glycerol) and emulsifier (soy lecithin). High-pressure homogenization (HPH) produced the best films among the treatments at the conditions used in this research. Water vapor permeability (WVP) of films decreased by 32% with decrease in the concentrations of glycerol and soy lecithin by 40 and 75%, respectively. As the concentration of glycerol or soy lecithin increased, tensile strength of the films decreased up to 71%, but the elongation at break increased up to 161%, demonstrating lubricant effects of glycerol and soy lecithin. The lightness and yellowness of the films increased and the redness decreased with increase in the concentration of glycerol or soy lecithin. The concentrations of glycerol and soy lecithin were identified as important variables in producing biopolymer films from potato peel.  相似文献   

5.
The properties of porcine plasma protein-based films as influenced by some factors and pretreatment were studied. Both protein concentrations (20 and 30 g L−1) and glycerol contents (50, 60 and 70 g/100 g protein) had the impact on film properties. Film prepared from film-forming solution (FFS) containing protein (30 g L−1) and glycerol (60 g/100 g protein) possessed the highest tensile strength (TS) (2.48 MPa), while that containing protein (30 g L−1) and glycerol (70 g/100 g protein) exhibited the greatest elongation at break (EAB) (18.33%). Protein and glycerol contents affected water vapor permeability (WVP) and transparency of the resulting films. No differences in protein solubility were found among all films (p > 0.05). Pretreatment of FFS by adjusting pH (2-11) and heating at different temperatures (40, 55 and 70 °C) on the properties of the resulting films was investigated. TS and EAB became higher but WVP decreased with decreasing or increasing pH value of FFS. Heat treatment of FFS with pH 3 and 10 had no impact on TS of the resulting film (p > 0.05). On the other hand, EAB and WVP increased with increasing temperature of FFS at both pHs (p < 0.05).  相似文献   

6.
The effect of pH-shifting, a process that induces the molten globule state in proteins, on the film-forming potential of soy protein isolate (SPI) at different temperatures was investigated. Partial unfolding at pH 1.5 or 12, followed by refolding at pH 7.0, was performed to alter the protein structure. Glycerin-plasticised films were prepared from pH-treated SPI at ambient temperature (20 °C), or by heating at 50, 60, 70, or 80 °C (30 min). Tensile strength (TS), elongation at break (EAB), water vapour permeability (WVP), protein solubility (pH 3–7), and non-participating proteins of films were analysed, and the film microstructures were examined. The pH12-treated SPI spontaneously formed a transparent, slightly yellowish film at 20 °C, which had the greatest EAB, while pH1.5-treated and native SPIs required preheating at 50 and 70 °C, respectively, to form a film. Heating generally decreased solubility and WVP but increased TS. Films formed from both pH12- and pH1.5-treated SPIs were more elastic (up to 2-fold greater in EAB, < 0.05) than the film formed from untreated SPI despite slightly reduced TS and WVP. Electrophoresis revealed disulphide bonds between A and B subunits of glycinin being a dominant force in pH12- and pH1.5-treated SPI films, while noncovalent forces were abundant in untreated SPI films. The pH12-treated SPI film consisted of more interactive protein strands than other SPI films, which seemed to explain its superior elastic properties.  相似文献   

7.
Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (< 0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (< 0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (< 0.05). Films with essential oils had varying ΔE* (total colour difference), where the highest value was observed in that added with bergamot essential oil (< 0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874–2926 cm−1 and 1731–1742 cm−1 than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p < 0.05), while the other films had lower activity. Thus, the incorporation of different essential oils and glycerol levels directly affected the properties of gelatin-based film from fish skin.  相似文献   

8.
Tensile strength (TS), percent elongation (%E), oxygen permeability (OP), and water vapor permeability (WVP) of lactic acid and rennet precipitated casein-based edible films were studied to determine the effect of protein to plasticizer ratio (0.6:1, 1:1, 1.4:1) and plasticizer type (sorbitol, glycerol) on these properties. TS increased (p<0.05) with increase in protein to plasticizer ratio. Sorbitol plasticized films were stronger (p<0.05) than glycerol plasticized films. However, films plasticized with glycerol were more extensible (p<0.05). Film %E decreased with increase in protein/plasticizer ratio for lactic acid casein films, whereas it increased for rennet casein films. Films plasticized with sorbitol were more effective (p<0.05) moisture and oxygen barriers than glycerol plasticized films. Overall, lactic acid casein films plasticized with sorbitol had the most effective mechanical and barrier properties.  相似文献   

9.
Edible Films and Coatings from Soy Protein   总被引:17,自引:0,他引:17  
A method was developed by which films could be prepared from commercial isolated soy protein (ISP). ISP was treated with alkali (ATISP) to alter film orooerties. Water vapor oermeability (WVP). oxygen‘permeability (O2P), tensile strength (TS), percent elongatidn (%E), and appearance of ISP and ATISP were compared. Alkali treatment had no effect on WVP. O2P, and TS, gave hieher %E, and improved film appearance. Films properties were also compared at pH 6, 8, 10, and 12. In general, pH 6 gave higher WVP and O2P and lower TS and %E; while higher pH gave lower WVP and O2P and higher TS and %E. ATISP films could not be produced at pH 6. Film appearance generally improved with increased pH.  相似文献   

10.
The use of starch for the production of biodegradable materials has been increasing. Wheat is an important source, however, durum wheat starch and its separated granular components had not been evaluated for this purpose. The aim of this study was to evaluate the physical and mechanical properties of durum wheat starch films when prepared with a distribution of different granular‐sized starches (A‐ and B‐type). Starch was isolated, and the A and B populations of granules were separated. Films were prepared by casting. Glycerol (G) was used as a plasticizer in concentrations of 25% and 40%, respectively. Starch films were evaluated using scanning electron microscopy (SEM), mechanical properties (tensile strength, TS, elongation at break, E, elastic modulus, EM), solubility, and X‐ray diffraction (XRD). Durum wheat starch films were transparent, flexible, and, according to SEM, highly homogeneous. Films prepared with 25% G showed brittle material behavior (TS = 42–50 MPa, E = 1.4–2.7%, and EM = 31–34 MPa), whereas those prepared with 40% G had ductile material characteristics (TS = 11–17 MPa, E = 4–41%, and EM = 4–11.3 MPa). These mechanical properties of the films were significantly affected by the glycerol concentration and the starch granule type used. The film solubility was low when compared to those reported in other studies. It increased with increasing plasticizer concentration. According to the XRD, the films showed a semi‐crystalline structure.  相似文献   

11.
The aim of this research was to evaluate the plasticizing effect of natural surfactants lecithin or yucca extract from Yucca schidigera on gelatin-based films. Films containing yucca extract showed higher tensile strength values (∼90-40 MPa) and moisture contents (∼15%) and less elongation (∼5%) and water vapor permeability values (∼0.22-0.09 g mm m−2 h−1 kPa−1) compared to films containing lecithin. Soluble films (∼20-50%) were obtained when yucca extract was used while lecithin produced low soluble films (<10%). The opacity of the films (∼14.5-16.2%) was similar for both surfactants and the film surface morphologies were continuous and homogeneous. X-ray diffraction indicated that the addition of surfactants produced amorphous films compared to gelatin-based films and FT-Infrared spectroscopy showed no evidence of association between the surfactants and the gelatin. The plasticizing effect was not obtained after surfactants addition and casting technique.  相似文献   

12.
This work was aimed to investigate the potential of PuOC protein isolate (PuOC PI) in preparation of biodegradable films at different pH values (2–12) and plasticizer content (0.3–0.6 g glycerol/g PuOC PI). Results showed that films could be formed in a wild range of pH, except at pH = 4–8. Films with 0.4 and 0.5 g glycerol/g PuOC PI were suitable for further analysis. The pH of film-forming solutions influenced all examined film’s characteristics. The amount of added glycerol significantly affected (p < 0.05) tensile strength, elongation at break and solubility of the films. Gas permeability of films with 0.4 g glycerol/g PuOC PI showed that these films represents an excellent barrier for O2, N2, CO2 and air. Obtained films have improved elongation at break and gas permeability characteristics compared to PuOC biodegradable films, thus they could be used as gas barrier stretch coating.  相似文献   

13.
A. Longares 《LWT》2004,37(5):545-550
The effect of varying thickness on the water barrier properties, tensile properties and sensory characteristics of glycerol-plasticised whey protein isolate (WPI) films was investigated. Thickness was varied by preparing films with increasingly dilute film forming WPI solutions in the range 9.5-2.3 g protein/100 g. All films had a glycerol to protein ratio of 0.37 (Gly: Pro). Tensile strength (TS), elastic modulus (EM) and film permeance were unaffected by film thickness but maximum load (ML) and % elongation (E) decreased (P<0.05) with decreasing thickness. In a sensory test with crackers and melted cheese, panelists could readily detect the thickest films (79 μm) but not the thinnest films (23 μm) (P<0.05). The results indicate that reducing the thickness of glycerol plasticised WPI films makes them less perceptible in a food system while maintaining moisture barrier and certain tensile properties.  相似文献   

14.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin with different degree of hydrolysis (DH: 0.40, 0.80 and 1.20%) added with glycerol as plasticizer at various levels (10, 15 and 20%, based on protein) were investigated. Films prepared from gelatin with all DH had the lower tensile strength (TS) and elongation at break (EAB) but higher water vapor permeability (WVP), compared with the control film (without hydrolysis) (p < 0.05). At the same glycerol content, both TS and EAB decreased, while WVP increased (p < 0.05) with increasing %DH. At the same DH, TS generally decreased as glycerol content increased (p < 0.05), however glycerol content had no effect on EAB when gelatins with 0.80 and 1.20% DH were used (p > 0.05). DH and glycerol content had no marked impact on color and the difference in color (ΔE) of resulting films. Electrophoretic study revealed that degradation of gelatin and their corresponding films was more pronounced with increased %DH, resulting in the lower mechanical properties of films. Based on FTIR spectra, with the increasing %DH as well as glycerol content, higher amplitudes for amide-A and amide-B peaks were observed, compared with film from gelatin without hydrolysis (control film) due to the increased –NH2 group caused by hydrolysis and the lower interaction of –NH2 group in the presence of higher glycerol. Thermo-gravimetric analysis indicated that film prepared from gelatin with 1.20% DH exhibited the higher heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Thus, both chain length of gelatin and glycerol content directly affected the properties of cuttlefish skin gelatin films.  相似文献   

15.
Effects of glycerol (3-7% w/w) and sorbitol (4-8% w/w) concentration, pH (7.0, 9.0, 11.0) and heating (90 °C, 20 min) of film-forming solution (FFS) on the water vapor permeability (WVP), moisture content (MC), solubility, light transmission and transparency of pea protein isolate (PPI) films were investigated. Films plasticized with sorbitol exhibited significantly lower WVP, lower MC and higher solubility, in comparison with glycerol-plasticized films. Increasing glycerol content of the films led to increases in WVP and MC but did not affect film solubility. In contrast, increase in sorbitol content had no effect on permeability and MC but resulted in increased film solubility. Moisture sorption isotherms of PPI films suggested that the difference in WVP observed among films plasticized with glycerol and sorbitol might be due to the different hygroscopicity of these plasticizers. The pH of FFS did not have a significant effect on WVP and MC. Solubility of PPI films formed from non-heated FFS was not affected by pH, whereas solubility of films formed from heat-treated FFS generally increased when pH was increased from 7.0 to 11.0. Heating of FFS resulted in improved film transparency. All tested films were characterized by excellent ability to absorb UV radiation. Microstructural observation by scanning electron microscopy did not show differences between sorbitol- and glycerol-plasticized films.  相似文献   

16.
ABSTRACT:  Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [ G '], viscous modulus [ G "], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The  G ' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure ( P  < 0.05). However, no difference was observed in  G " values at different homogenization pressures ( P  > 0.05). The viscosity decreased from 644 to 468 kPa·s as the pressure increased from 138 to 207 MPa at 90 °C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.  相似文献   

17.
In this study, the physical, thermal and mechanical properties of a novel edible film based on psyllium hydrocolloid (PH) were investigated. PH films were prepared by incorporation of three levels of glycerol (15%, 25%, and 35% w/w). As glycerol concentration increased, water vapor permeability (WVP), percent of elongation (E%) and water solubility of PH films increased whilst, tensile strength (TS), surface hydrophobicity and glass transition point (Tg) decreased significantly. At the level of 15% (W/W) of glycerol, PH films showed the lowest WVP values (1.16 × 10−10 g H2O m−2 s−1 MPa−1), E% (24.57%) and water solubility (47.69%) and the highest values for TS (14.31 MPa), water contact angle (84.47°) and Tg (175.2 °C). By increasing glycerol concentration, PH films became slightly greenish and yellowish in color but still transparent in appearance. This study revealed that the psyllium hydrocolloid had a good potential to be used in producing edible films with interesting specifications.  相似文献   

18.
An antimicrobial edible film was developed from defatted mustard meal (Sinapis alba) (DMM), a byproduct from the bio-fuel industry, without incorporating external antimicrobials and its antimicrobial activity against Listeria monocytogenes and physical properties were investigated. The DMM colloidal solution consisting of 184 g water, 14 g DMM, and 2g glycerol was homogenized and incubated at 37°C for 0.2, 0.5, 24 or 48 h to prepare a film-forming solution. The pH of a portion of the film-forming solution (pH 5.5) was adjusted to 2.0 or 4.0. Films were formed by drying the film-forming solutions at 23°C for 48 h. The film-forming solution incubated for 48 h inhibited L. monocytogenes in broth and on agar media. Antimicrobial effects of the film prepared from the 48 h-incubated solution increased with decrease in pH of the solution from 5.5 to 2.0. The film from the film forming solution incubated for 48 h (pH 2.0) initially inhibited more than 4.0 log CFU/g of L. monocytogenes inoculated on film-coated salmon. The film-coating retarded the growth of L. monocytogenes in smoked salmon at 5, 10, and 15°C and the antimicrobial effect during storage was more noticeable when the coating was applied before inoculation than when it was applied after inoculation. The tensile strength, percentage elongation, solubility in watercxu, and water vapor permeability of the anti microbial film were 2.44 ± 0.19 MPa, 6.40 ± 1.13%, 3.19 ± 0.90%, and 3.18 ± 0.63 gmm/kPa hm(2), respectively. The antimicrobial DMM films have demonstrated a potential to be applied to foods as wraps or coatings to control the growth of L. monocytogenes.  相似文献   

19.
热处理和碱处理对可食性大豆分离蛋白膜性能的影响   总被引:14,自引:5,他引:14  
研究了热处理和碱处理对可食性大豆分离蛋白(SPI)膜性能的影响。对成膜液进行适当的加热和调节pH可以提高SPI膜的抗拉强度(TS)和伸长率(E),降低水蒸气透过系数(WVP)。调节成膜液的pH到9,在70℃加热20min,所得到的膜机械性能和阻湿性能最好。  相似文献   

20.
Jong-Whan Rhim  Jun Ho Lee 《LWT》2007,40(2):232-238
Polylactic acid (PLA)-coated soy protein isolate (SPI) films were prepared by dipping SPI film into PLA solution. The effects of coating on improvements in mechanical and water barrier properties of the film were tested by measuring selected film properties such as tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS). TS of SPI films increased from 2.8±0.3 up to 17.4±2.1 MPa, depending on the PLA concentration of the coating solution, without sacrificing the film's extensibility. In contrast, the extensibility of SPI film coated with solution containing more than 2 g PLA/100 ml solvent, increased. WVP of PLA-coated SPI films decreased from 20 to 60 fold, depending on the concentration of PLA coating solution. Water resistance of SPI films was greatly improved as demonstrated by the dramatic decrease in WS for PLA-coated films. The improvement in water barrier properties was mainly attributed to the hydrophobicity of PLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号