首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation is conducted into the damage progression and strength of bolted joints with fibre-reinforced composite laminates and countersunk fasteners. The main goal of the experimental investigation is to characterise the effect of the countersink geometry on the load-carrying capacity of single lap joints in comparison to the straight-shank case. The effects of bolt torque, clearance and countersink height ratio on the damage progression and joint strength are also studied. Experimental tests and detailed microscopy studies are conducted on a bearing test specimen with a straight-edged hole, and several single-lap joint configurations with countersunk fasteners. It is found that introduction of the countersunk hole roughly halves the bearing stress, and causes delamination for some configurations. This delamination is primarily located at the start of the countersink region, though is found to be triggered by other damage mechanisms and has only minor influence on the results. Bolt torque increases the density of through-thickness damage though limits its extension from the hole edge, whilst bolt clearance causes localisation of the damage region. Increasing the ratio of the countersink depth to the laminate thickness reduces the extent of bearing and promotes bending, with a change to net section failure at large ratios.  相似文献   

2.
复合材料中厚板沉头连接结构强度与损伤失效   总被引:1,自引:0,他引:1       下载免费PDF全文
针对复合材料沉头螺栓连接结构的强度与损伤问题,开展了两种厚度复合材料层合板凸头与沉头螺栓连接结构挤压强度对比试验研究。试验结果表明,增加层合板厚度会引起连接结构挤压强度下降,但沉头连接结构下降比例小于凸头连接结构。通过数值模拟方法对复合材料中厚板沉头连接结构的强度及损伤失效进行分析。提出一种非线性面内连续损伤与三维混合失效模型,模型考虑了复合材料基体剪切非线性特征并改进了纤维损伤失效判据,有效解决了数值模拟中沉头复合材料连接结构难于收敛的问题。对比分析表明:沉头连接结构的数值计算结果与试验结果吻合良好,极限强度最大计算误差8.62%。  相似文献   

3.
This paper presents the results of a study into a novel application of the “stacked-shell” laminate modelling approach to dynamically loaded bolted composite joints using the explicit finite element code PAM-CRASH. The stacked-shell approach provides medium-high fidelity resolution of the key joint failure modes, but is computationally much more efficient than full 3D modelling. For this work, a countersunk bolt in a composite laminate under in-plane bearing loading was considered. The models were able to predict the onset of damage, failure modes and the ultimate load of the joint. It was determined that improved debris models are required in order to accurately capture the progressive bearing damage after the onset of joint failure.  相似文献   

4.
提出考虑层合板面内(纤维和基体失效)和层间失效的复合材料连续损伤力学模型,对螺栓接头的渐进失效行为进行预测。基于Tsai-Wu强度准则,发展可以判定复合材料面内和层间失效的强度准则。采用幂指数衰减材料退化模型模拟复合材料的损伤扩展过程。建立连续损伤力学模型用以研究0°铺层比例和螺栓直径对复合材料螺栓接头挤压性能的影响,预测结果与实验结果吻合。结果表明:0°铺层比例过高,接头发生剪切破坏,降低连接结构承载能力;增大螺栓直径,层合板损伤受到抑制,可提高复合材料螺栓接头的挤压强度。   相似文献   

5.
为系统地研究T800碳纤维增强复合材料螺栓连接的力学性能,首先,对T800碳纤维增强复合材料双剪单钉连接进行了面内准静态拉伸试验,探讨了铺层比例、铺层顺序、螺栓直径以及固化工艺对复合材料螺栓连接刚度和2%偏移挤压强度的影响;然后,根据试验结果得到了T800碳纤维增强复合材料螺栓连接的应力集中减缓因子;最后,结合相应铺层比例的无缺口层合板的应力集中减缓因子和拉伸强度,建立了复合材料连接最终挤压强度的工程算法。结果表明:当螺栓断裂时,连接的最终挤压强度由螺栓剪切强度和螺栓直径/板厚比决定;连接存在挤压和剪切2种失效形式,与±45°铺层比例有关;工程算法的计算结果与试验结果吻合良好。所得试验结果和工程算法可为T800碳纤维增强复合材料螺栓连接的初步设计提供理论依据和技术支持。   相似文献   

6.
《Composites Part A》1999,30(10):1215-1229
An experimental study was performed to assess the effects of clamp-up on the net-tension failure of laminated composite plates with bolt-filled holes. Graphite/epoxy prepreg of T800/3900-2 was selected for fabricating the laminates for the tests. The tensile strength and failure response of specimens with an open hole and a bolt-filled hole were evaluated. Both 100% bypass load (no bolt bearing load) and no bypass load (100% bolt bearing load) were considered during the experiments. X-radiographs were taken for specimens after pre-loading at different stress levels for the purpose of characterizing the failure modes and damage progression inside the composite.Experimental results showed that the bolt clamping force can significantly reduce the notch tensile strength of composite laminates which are prone to fiber-matrix splitting and delamination. A reduction in failure load of up to 20% was observed. Higher clamping pressure resulted in higher reductions of notch strength. However, for bolted joints which failed in a net-tension mode, clamping improved the joint strength regardless of the ply orientation.  相似文献   

7.
进行了复合材料一铝合金三钉单搭连接单向拉伸试验,测量了层合板面内位移、应变和离面位移随载荷的变化关系,建立了复合材料多钉单搭连接的三维累积损伤有限元模型,计算与试验对比结果表明,该模型可模拟大范围损伤发生之前的承载特性。采用试验和数值模拟相结合的方法研究了复合材料一金属三钉单搭连接钉载分布情况,结果表明:试验用复合材料-铝合金三钉单搭连接,螺栓1承载比例最高,螺栓3次之,中间螺栓的承载比例最低,并且螺栓承载比例在加载过程中基本保持不变;随着金属连接板刚度的增加,螺栓1的承载比例增加,螺栓3承载比例降低,中间螺栓2的承载比例变化较小,层合板离面位移减小;金属板配合间隙变化对钉载分布影响很小,但层合板的离面位移随配合间隙的增大而增大。  相似文献   

8.
Efficiently joining materials with dissimilar mechanical and thermal properties is fundamental to the development of strong and lightweight load-bearing hybrid structures particularly for aerospace applications. This paper presents a ply-interleaving technique for joining dissimilar composite materials. The load-carrying capacity of such a joint depends strongly on several design parameters such as the distance between ply terminations, the spatial distribution of ply terminations, and the stiffness and coefficients of thermal expansion of the composites. The effects of these factors on the strength of quasi-isotropic hybrid carbon/glass fibre composite are investigated using combined experimental, analytical and computational methods. Through fractographic analyses significant insights are gained into the failure mechanism of the hybrid joints, which are then used to aid the development of predictive models using analytical and high fidelity computational methods. To characterise the interaction between transverse matrix cracking and delamination, continuum damage mechanics model and cohesive zone model are employed. The predictions are found to correlate well with experimental data. These modelling tools pave the way for optimising hybrid joint concepts, which will enable the structural integration of dielectric windows required for multifunctional load-bearing antenna aircraft structures.  相似文献   

9.
An experimental test series of mechanically fastened bolted joints with countersunk head in quasi-isotropic carbon/epoxy composite laminates under quasi-static and dynamic loads with velocities up to 10 m/s has been conducted in order to investigate potential strain rate effects on the failure behaviour. The test campaign covered bolt pull-through tests, single lap shear tests with one and two bolts and coach peel tests. Identical test equipment has been used for the whole range of test velocities to avoid influences of different test machines. No rate sensitivity occurred for most test configurations. Only the single lap shear tests with two bolts showed a change of failure mode at the highest test velocity enabling higher energy absorption.  相似文献   

10.
The current paper is concerned with modelling damage and fracture in woven fabric composite double-lap bolted joints that fail by net-tension. A 3-D finite element model is used, which incorporates bolt clamp-up, to model a range of CFRP bolted joints, which were also tested experimentally. The effects of laminate lay-up, joint geometry, hole size and bolt clamp-up torque were considered. An Extended Finite Element (XFEM) approach is used to simulate damage growth, with traction–separation parameters that are based on previously reported, independent experimental measurements for the strength and toughness of the woven fabric materials under investigation. Good agreement between the predicted and measured bearing stress at failure was obtained.  相似文献   

11.
Single-lap shear behaviour of carbon–epoxy composite bolted aircraft fuselage joints at quasi-static and dynamic (5 m/s and 10 m/s) loading speeds is studied experimentally. Single and multi-bolt joints with countersunk fasteners were tested. The initial joint failure mode was bearing, while final failure was either due to fastener pull-through or fastener fracture at a thread. Much less hole bearing damage, and hence energy absorption, occurred when the fastener(s) fractured at a thread, which occurred most frequently in thick joints and in quasi-static tests. Fastener failure thus requires special consideration in designing crashworthy fastened composite structures; if it can be delayed, energy absorption is greater. A correlation between energy absorption in multi-bolt and single-bolt joint tests indicates potential to downsize future test programmes. Tapering a thin fuselage panel layup to a thicker layup at the countersunk hole proved highly effective in achieving satisfactory joint strength and energy absorption.  相似文献   

12.
The fracture process of composite laminates subjected to static or fatigue tensile loading involves sequential accumulation of intra- and interlaminar damage, in the form of transverse cracking, splitting and delamination, prior to catastrophic failure. Matrix cracking parallel to the fibres in the off-axis plies is the first damage mode observed. Since a damaged lamina within the laminate retains certain amount of its load-carrying capacity, it is important to predict accurately the stiffness properties of the laminate as a function of damage as well as progression of damage with the strain state. In this paper, theoretical modelling of matrix cracking in the off-axis plies of unbalanced symmetric composite laminates subjected to in-plane tensile loading is presented and discussed. A 2-D shear-lag analysis is used to determine ply stresses in a representative segment and the equivalent laminate concept is applied to derive expressions for Mode I, Mode II and the total strain energy release rate associated with off-axis ply cracking. Dependence of the degraded stiffness properties and strain energy release rates on the crack density and ply orientation angle is examined for glass/epoxy laminates. Suitability of a mixed mode fracture criterion to predict the cracking onset strain is also discussed.  相似文献   

13.
This paper investigates the capability of a three-dimensional finite element model with damaging material behaviour, cohesive elements and damage regularisation to simulate complex damage patterns in fibre metal laminate (FML) joints. The model incorporates a three-dimensional continuum damage mechanics approach for the composite plies, a plasticity model for the aluminium layers, and a delamination model between layers. A nonlocal averaging scheme is implemented to mitigate the mesh sensitivity that occurs with strain-softening material models. Bearing stress-strain responses and variations in stiffness are calculated, and damage progression is described in detail for all plies and interfaces. Microscopy and stress-strain data from a parallel series of experimental tests are presented, and damage and failure phenomena observed in the tests are compared with the model. Generally, good agreement between model and tests was achieved but certain limitations of the numerical model were observed and are discussed. The combined numerical and experimental information provide a detailed understanding of the failure sequence of FML joints.  相似文献   

14.
Single-lap, carbon-epoxy joints with countersunk fasteners were modelled using the nonlinear finite element code Abaqus. A highly-detailed analysis of the stress distribution at the countersunk hole boundary is provided. Bolt-hole clearance, which arises due to limitations in manufacturing capabilities, is modelled extensively. Clearance levels both inside and outside typical aerospace fitting tolerances are studied and the finite element model is validated with experimental data. Plots of radial stress in each ply of the countersunk laminate show the load transfer to be severely localised, with only a few plies bearing the majority of the load. The inclusion of clearance in the model was shown to result in far higher radial stresses compared to those in the neat-fit joint model. An associated loss in joint stiffness of more than 10% was recorded for the highest clearance considered (240 μm). Finally compressive through-thickness stresses are shown to be present at the damageable region of the countersunk hole, and increase with bolt-hole clearance. These compressive stresses, which are an indicator of lateral constraint, are seen to suppress “brooming” failure in the countersunk laminate.  相似文献   

15.
针对复合层压板单螺栓单搭接结构,提出一种更合理的四阶段刚度模型。该模型是在传统三阶段刚度分析模型的基础上,采用部分滑移理论对模型粘滞阶段的刚度进行了改进;同时考虑到层压板之间、垫片与层压板之间的异步滑动,增加了部分滑移阶段,给出新的刚度模型的理论分析过程和使用条件。为了验证改进模型的准确性,在ABAQUS中建立了对应的三维有限元模型,同时对比了层压板单独建模和均质建模的优缺点,表明单独建模更符合实际,更精确;最后通过分析螺栓孔间隙、扭矩、铺层厚度、宽径比、液态垫片及铺层角度对复合材料螺栓连接各阶段刚度的影响。结果表明:螺栓孔间隙会导致螺杆发生二次弯曲,从而降低其接头刚度;相对于宽径比的影响,铺层厚度对螺栓接头刚度的影响更显著;不同铺层角度对螺栓接头刚度的影响机制也不同。   相似文献   

16.
A three-dimensional progressive damage model was developed to simulate the damage accumulation and predict the residual strength and final failure mode of bolted composite joints under in-plane tensile loading. The parametric study included stress analysis, failure analysis and material property degradation. Stress analysis of the three-dimensional geometry was performed numerically using the finite element code ANSYS with special attention given to the detailed modelling of the area around the bolt in order to account for all damage modes. Failure analysis and degradation of material properties were implemented using a set of stress-based Hashin-type failure criteria and a set of appropriate degradation rules, respectively. In order to validate the finite element model, a comparison of stress distributions with results from analytical models found in the literature was carried out and good agreement was obtained. A parametric study was performed to examine the effect of bolt position and friction upon damage accumulation and residual strength.  相似文献   

17.
This paper contains the details of an experimental investigation into double lap single bolt tension joints made from 6.35 mm thick pultruded fibre reinforced plastic flat sheet. The joint geometry [edge distance to bolt diameter (E/D) and width to diameter (W/D) ratio] was varied and the effect of bolt clamping torque was investigated. Failure loads, critical end distances and critical widths were found to increase as the bolt clamping torque increased. After an initial bolt movement, the load vs bolt displacement plots are linear until the joints fail or the stiffness reduces significantly. The load at which the joint stiffness reduces has been called the damage load. This damage load is thought to be a useful quantity on which to base design. A simple statistical analysis has been carried out on the damage loads and damage load capacities for single bolt joints have been determined for prescribed confidence levels.  相似文献   

18.
The optimum bolted joints for hybrid composite materials composed of glass-epoxy and carbon-epoxy under tensile loading were investigated. The design parameters considered for the bolted joints were ply angle, stacking sequence, the ratio of glass-epoxy to carbon-epoxy, the outer diameters of washers and the clamping pressure. As bearing failure was desirable for bolted joints, the geometry of the bolted joint specimen was designed to undergo bearing failure only.

By inspecting the fracture surfaces of the specimens it was found that delamination on the loaded periphery of the holes and extensive damage on the edge region constrained by a washer occurred. To assess the delamination of the hybrid composite materials, three-dimensional stress analysis of the bolted joint was performed using a commercial finite-element software and compared with the experimental results.  相似文献   


19.
The potential application of embedded fibre optic Bragg grating strain sensors for the health monitoring of adhesively bonded composite ship joints is investigated in this paper. Bragg grating sensors were embedded at various locations along the interface of adhesively bonded glass-reinforced plastic composite joints with artificially introduced disbonds to assess their capability to detect bond-line damage under in-plane shear and through-thickness tension. Finite element (FE) models indicated that the presence of the disbond significantly altered the bond-line strain distribution under such loads. The embedded sensors successfully detected this effect, and the sensor measurements compared well to FE predictions. However, the experimental measurements of the magnitude of the strain at the tips of the disbonds showed significant variations, presumably due to its high sensitivity to defect edge conditions which could not be experimentally controlled with a high degree of repeatability. Both the FE models and the experimental results showed that the effect of disbond damage was localised, more so under in-plane shear than through-thickness tension. This would necessitate the use of an optimised sensor array and pattern recognition algorithm for the reliable detection of an arbitrary disbond.  相似文献   

20.
对激光选区熔化成形(SLM)铝合金板与碳纤维增强树脂基(CFRP)复合材料层合板两列四排沉头螺栓单剪连接件在拉伸载荷作用下进行了数值分析和试验研究。基于渐进损伤法的三维有限元模型准确地预测了连接件材料损伤萌生和演变,对比试验和三维有限元所得钉载比例、极限载荷及失效模式,可以发现,通过拟合SLM铝合金板断裂应变和应力三轴度曲线,编写UMAT子程序引入韧性准则和Hashin失效准则的三维有限元模型预测的连接件失效载荷与试验值误差仅为1.9%,且失效模式均为净截面拉断,两者吻合,此方法可以满足工程精度要求。利用经过验证的数值模型,分别预测了SLM铝合金板和CFRP层合板损伤演变过程,并分析了SLM铝合金板刚度对连接结构失效模式的影响,当SLM铝合金板厚度增大到4mm时,连接结构失效模式由SLM铝合金板净截面拉断转移到CFRP层合板上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号