首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Highly oxidized multifunctional compounds (HOMs) formed through gas-phase reactions are thought to account for a significant fraction of the secondary organic aerosol (SOA) formed in low-nitric oxide (NO) environments. HOMs are known to be peroxide-rich and unstable in SOA, however, and their fate once they partition into particles is not well understood. In the study reported here, we identified particle-phase reactions and decomposition products for an α-alkoxy hydroperoxyaldehyde that served as a convenient model for HOMs, and also quantified rate and equilibrium constants for cyclic peroxyhemiacetal formation and the effects of particle acidity and relative humidity on reaction products and timescales for decomposition of peroxide-containing compounds. Sulfuric acid increased the rate of acetal formation and subsequent peroxide decomposition, but the effect was eliminated when aqueous seed particles were used in humid air, indicating that organic/aqueous phase separation can affect the ability of strong acids to catalyze these and other reactions in SOA. The results will be useful for understanding and predicting the atmospheric fate of organic peroxides and the effects of their particle-phase reactions on SOA composition.

Copyright © 2018 American Association for Aerosol Research  相似文献   

2.
Understanding the mixing behavior of anthropogenic primary and biogenic secondary organic aerosol (POA and SOA) is important for characterizing their interactions with water vapor. The following work expands upon previous studies and investigates cloud condensation nuclei (CCN) activity and droplet kinetics of α-pinene SOA formed in an environmental chamber and mixed with diesel or motor oil-diesel fuel POA. The changes in the aerosol mixing are similar to previously published work but this study provides new CCN activity and droplet information. The CCN activity of the unmixed aerosol systems are measured separately; κ = 0.15, 0.11, 0.022 for α-pinene SOA, diesel POA and motor oil-diesel fuel POA, respectively. In the α-pinene SOA + diesel POA mixture, the CCN activity, characterized by κ-hygroscopicity, decreases from κ = 0.15 to 0.06 after an initial injection of the POA but increases to κ = 0.12. The increase in CCN activity occurs after particle collision (coagulation and wall-loss) rates dominate aerosol processes in the chamber. The α-pinene SOA + motor oil-fuel POA does not readily mix and the CCN activity of the complex system increases with time (from κ = 0.022 to 0.10). An empirical equation using unit mass resolution (UMR) AMS data of two different ion fragments reasonably predicts CCN activity of the POA and SOA mixtures. CCN measurement may be a promising tool to gain additional insight into the complex mixtures of organic aerosol and subsequent interactions with water vapor.

Copyright © 2018 American Association for Aerosol Research  相似文献   


3.
Aerosol formation is directly influenced by meteorological properties such as temperature and relative humidity. This study examines the influence of temperature on the physical properties and chemical composition of the aerosol produced from radical oxidation of aliphatic amines. Aerosol formation for temperatures ranging from 10 to 40°C was investigated in dual 90 m3 indoor atmospheric chambers. Further, chemical and physical responses of aerosol formed at one temperature and then raised/cooled to another were investigated in detail. Around two to three times more aerosol formation occurred at 10°C than at 40°C. This has important implications for locations influenced by amine emissions during the winter months. Significant aerosol formation occurred with the oxidation of amines with nitrate radical (100–600 μg/m3) and consisted largely of amine nitrate salts. These reactions are important contributors to aerosol formation during the nighttime hours, when nitrate radical is the dominant oxidant and temperatures tend to be cooler. Solid/gas partitioning of amine nitrate salt aerosol was consistent with literature results. A novel, temperature dependent, mechanism describing peroxy and hydroperoxy radical reactions was observed in the trimethylamine with hydroxyl radical oxidation experiments.

Copyright © 2016 American Association for Aerosol Research  相似文献   


4.
Comparison of activity coefficient models for electrolyte systems   总被引:1,自引:0,他引:1  
Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems, and the Extended UNIQUAC model from the Technical University of Denmark (DTU). Test systems containing a single salt (NaCl), multiple salts, and mixed solvent aqueous electrolyte solutions were chosen. The performance of the activity coefficient models were compared regarding the accuracy of solid–liquid and vapor–liquid equilibrium calculations for the test systems. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

5.
The reactions of ozone with a series of monoterpenes (α-pinene, sabinene, limonene and myrcene) were investigated in a novel flow reactor dedicated to the investigation of secondary organic aerosol (SOA) formation. Rate constants for the gas phase reactions and nucleation thresholds were determined at T~296 K, P~764 Torr under dry conditions (dew point ≤?33 °C) and in absence of OH radicals scavenger and seed particles. Comparison with the literature as well as data from a simulation chamber showed good agreement. The experiments also show that the novel flow reactor improves the accuracy in evaluating the nucleation thresholds during the ozonolysis of monoterpenes and show that aerosol flow reactor is a useful tool to study the SOA nucleation step. Given as an upper limit, the nucleation thresholds obtained are (in molecule cm?3/ppb): α-pinene, 3.9×1010/1.56; sabinene, 6.2×109/0.26; limonene, 1.1×1010/0.43 and myrcene 2.1×1010/0.83.  相似文献   

6.
Using a new generation air quality modeling system (WRF/Chem) fully coupled with secondary organic aerosol model (SORGAM), we investigate the spatial and temporal characteristics of secondary organic aerosol (SOA) as well as the relative contributions of anthropogenic and biogenic sources to the formation of SOA in 2006 over China. To improve SOA simulation, a parameterization scheme for the isoprene induced SOA formation was added in WRF/Chem. The simulated SOA concentrations show large temporal and spatial variability, with the highest levels occur in summer and the lowest concentrations occur in winter. The high SOA regions are located near 30°N in central China in summer, with values exceeding 8 μg m?3, while they shift to South China, mainly in Pearl River Delta (PRD) region in winter, with the concentrations at or below 2 μg m?3. Across the whole country, the average ground level SOA concentrations are 0.94, 2.54, 1.41, 0.43, and 1.34 μg m?3 in spring, summer, autumn, winter, and year, respectively. Commonly, the SOA loading is mostly concentrated in the boundary layer (~70%). Although the SOA concentrations are dominated by biogenic sources in summer, the contributions of anthropogenic sources exceed biogenic sources over most areas in winter. On the national level, the anthropogenic sources contribute 35% of total SOA, with 41%, 26%, 39%, and 59% in spring, summer, autumn and winter, respectively. The estimated annual SOA production reaches 3.05 Tg yr?1 over China, accounting for about 4–25% of global SOA formation. The modeled OC and EC concentrations as well as SOC to OC ratios are compared with the measurements and previous studies. The results suggest that the spatial and temporal characteristic of OC and EC levels is well captured by the model. However, the simulated SOA concentrations in this study might be underestimated by 0–75%. The modeling SOA in this paper are in agreement with other field and modeling studies, also showing the importance of SOA in total organic aerosol in China.  相似文献   

7.
8.
9.
A key atmospheric process that is studied in laboratory chambers is the oxidation of volatile organic compounds to form low volatility products that condense on existing atmospheric particles (or nucleate) to form organic aerosol, so-called secondary organic aerosol. The laboratory chamber operates as a chemical reactor, in which a number of chemical and physical processes take place: gas-phase chemistry, transport of vapor oxidation products to suspended particles followed by uptake into the particles, deposition of vapors on the walls of the chamber, deposition of particles on the walls of the chamber, and coagulation of suspended particles. Understanding the complex interplay among these simultaneous physicochemical processes is necessary in order to interpret the results of chamber experiments. Here we develop and utilize a comprehensive computational model for dynamics of vapors and particles in a laboratory chamber and analyze chamber behavior over a range of physicochemical conditions.

Copyright © 2018 American Association for Aerosol Research  相似文献   


10.
Light-absorbing organic aerosol (brown carbon, BrC) impacts the radiative balance of the earth’s atmosphere; however, the magnitude of this impact is poorly constrained due to uncertainties in BrC sources, composition, and lifetime. In particular, the role of chemical “aging” on the optical properties of BrC particles is poorly understood. Here we carry out laboratory studies aimed at understanding how one such aging process, heterogeneous oxidation, may affect the chemical and optical properties of biomass burning-derived BrC. We generate BrC from smoldering ponderosa pine needles, oxidize the BrC in a flow reactor, and use simultaneous measurements of aerosol optical properties and chemical composition to monitor changes upon oxidation. Under the set of conditions investigated here, we find that with increased oxidant exposure, the aerosol becomes more oxidized and less absorbing, presumably due to oxidative degradation of the chromophores. Both the kinetics and evolution of this process are oxidant dependent. While heterogeneous oxidation by ozone results in a rapid “bleaching” of the BrC (i.e., decrease in absorptivity), a substantial fraction of the BrC is resistant to bleaching by this mechanism. In contrast, bleaching due to heterogeneous oxidation by OH in the presence of ozone remains active over long timescales (timescale of days), suggesting a sustained evolution of BrC optical properties throughout the aerosol atmospheric lifetime.

Copyright © 2019 American Association for Aerosol Research  相似文献   

11.
This note describes measurements of the mass-specific extinction coefficient, σs, of carbonaceous aerosol produced during hydrocarbon combustion. Measurements of σs were obtained by laser extinction at λ=632nm. The aerosol was generated using a laminar diffusion flame, and the mass-specific extinction coefficient determined as a function of the global equivalence ratio, φ. The elemental carbon content of the aerosol was also determined with respect to φ. A relationship was developed between the elemental carbon/total carbon (EC/TC) ratio and σs. A simple method of producing laboratory aerosol with controlled EC/TC ratio is also presented.  相似文献   

12.
石灰活性对中空硬硅钙石二次粒子球形貌的影响   总被引:2,自引:0,他引:2  
研究了石灰CaO晶粒尺寸和消解速度对合成中空硬硅钙石二次粒子球的影响。CaO对晶粒尺寸小,石灰消解速度快。CaO晶粒对合成硬硅钙石晶体没有影响,但影响硬硅钙石二次粒子球的形貌。CaO晶粒尺寸小能形成中空二次粒子球,球尺寸随CaO晶粒尺寸增大有所增大。CaO晶粒一旦烧结变粗则形成的是硬硅钙石堆积团。  相似文献   

13.
A.J. Rader 《Polymer》2004,45(2):659-668
Two different computational methods are employed to predict protein folding nuclei from native state structures, one based on an elastic network (EN) model and the other on a constraint network model of freely rotating rods. Three sets of folding cores are predicted with these models, and their correlation against the slow exchange folding cores identified by native state hydrogen-deuterium exchange (HX) experiments is used to test each method. These three folding core predictions rely on differences in the underlying models and relative importance of global or local motions for protein unfolding/folding reactions. For non-specific residue interactions, we use the Gaussian Network Model (GNM) to identify folding cores in the limits of two classes of motions, shortly referred to as global and local. The global mode minima from GNM represent the residues with the greatest potential for coordinating collective motions and are explored as potential folding nuclei. Additionally, the fast mode peaks that have previously been labeled as the kinetically hot residues are identified as a second folding core set dependent on local interactions. Finally, a third folding core set is defined by the most stable residues in a simulated thermal denaturation procedure of the FIRST software. This method uses an all-atomic analysis of the rigidity and flexibility of protein structures, which includes specific hydrophobic, polar and charged interactions. Comparison of the three folding core sets to HX data indicate that the fast mode peak residues determined by the GNM and the rigid folding cores of FIRST provide statistically significant enhancements over random correlation. The role of specific interactions in protein folding is also investigated by contrasting the differences between these two network-based computational methods.  相似文献   

14.
The effects of Pb(II) on the secondary structure and biological activity of trypsin have been examined by monitoring changes in its conductivity and IR and circular dichroism (CD) spectra. The results show that Pb(II) reacts with trypsin, and that the binding sites might be -OH and -NH groups in pepsin. The CD spectra indicate that interaction with Pb(II) significantly affects the secondary structure of trypsin, the beta-sheet-structure content being increased by about 42%, whilst those of alpha-helix and beta-turn structures are decreased by 13% and 21%, respectively. The results clearly demonstrate that Pb(II) affects the biological activity of trypsin by modifying its secondary structure. Most interesting is that Pb(II) up-regulates the activity of trypsin at low concentrations while down-regulating it at high concentrations.  相似文献   

15.
The role of water activity on the formation of peroxides and carbonyl compounds during lipid oxidation is important to know because there could be either beneficial or detrimental effects of water activity on lipid oxidation in stored foods. Therefore, methyl linoleate was chosen as a model lipid and was autoxidized to 1% at water activity ranging from 0.02 to 0.79 at 37°C. Oxygen uptake was monitored manometrically. The peroxide and carbonyl contents were determined upon termination of the autoxidation studies. Methyl linoleate autoxidation was characterized by three phases: i) an initial induction period of no oxygen absorption; ii) a slow rate of oxygen absorption, up to 0.15% oxidation; and iii) a relatively faster rate of oxygen absorption beyond 0.15% up to 1% oxidation. Water activity had considerable influence during the first phase. There was no induction period at or below water activity 0.22. The induction period begins at water activity 0.32 and could be extended to a limit with increase in water activity. Once the induction period was passed water activity had no influence on the rate of oxidation. However, during the second and third phases water activity becomes important in the stabilization of peroxides/hydroperoxides and decides the course of secondary reactions that follow peroxide decomposition. Higher water activity values, particularly water activity 0.67, tended to stabilize peroxides. Water activity had considerable influence on the formation of secondary products of autoxidation as evidenced by the variation in the type and quantity of carbonyl compounds at different water activity values.  相似文献   

16.
17.
Sensitivity of secondary organic aerosol (SOA) concentrations in the South Coast Air Basin (SoCAB) of California to nitrogen oxide (NOx) emission is simulated using gas-phase chemistry and gas-particle partitioning modules. These modules are implemented into a three-dimensional air quality model applied for high-pollution summer meteorology and 2008 emissions. To test sensitivity, NOx emissions in all locations and at all times are scaled by factors ranging from 0.1 to 10.0 in separate model runs. The basin-wide average SOA concentration exhibits a ‘turnover’ NOx emission multiplicative factor, above and below which the average SOA concentration decreases. For the entire SoCAB, this critical NOx emission factor is ~0.3; while the magnitude of SOA concentrations changes with time, this peak value (~0.2–0.3) appears to be relatively independent of the hour of the simulated day. When considering individual locations within the SoCAB, this peak factor shows a slightly broader range. Projected emissions for 2023 indicate a decrease in basin-average SOA concentration; the response at individual locations, however, can be either positive or negative, indicating the need for location-specific considerations. Ensembles of module simulations based on parameter values selected using efficient sampling techniques (Latin Hypercube method) are used to identify parameters to which SOA predictions are significantly sensitive. Total SOA predictions are most sensitive (in no particular order) to concentrations of O3, unsaturated species formed from the gas-phase oxidation of monoaromatic compounds, and substituted products from long-chain alkane oxidation. Secondary inorganic aerosol species, likely through influencing aerosol liquid water, control at least partially the formation of SOA upwind. In addition, the rate at which unsaturated bicyclic oxidation products of monoaromatic compounds are oxidized by hydroxyl radical impacts significantly SOA prediction. These findings emphasize the need for consideration of long-chain alkanes and monoaromatic species when designing emission control strategies.

© 2018 American Association for Aerosol Research  相似文献   


18.
19.
20.
气泡曳力系数模型分区研究   总被引:2,自引:0,他引:2  
周毓佳  赵陈儒  薄涵亮 《化工学报》2019,70(z2):108-116
由曳力系数表征的曳力模型作为重要的相间力模型之一,被广泛应用于Euler-Euler方法和Euler-Lagrange方法下的连续相和离散相动量方程中。由于现有气泡曳力系数模型形式各异且适用范围有限,因此需要对已有模型进行充分地评价。考虑到已有曳力系数模型的适用范围和气泡变形的影响,参考各曳力系数模型采用的相关参数,建议基于Reynolds数Re和Weber数We分区选择最佳模型。将分区曳力系数模型、已有曳力模型与实验数据对比,发现分区曳力系数模型总体预测结果更符合实验测量值。将分区曳力系数模型应用至数值模拟中,可以更精确地追踪不同尺寸气泡的位置,使数值模拟结果更接近真实的物理情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号