首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under the conditions of phase transfer catalysis and nitrobenzene as the solvent, the halogen-exchange fluorination of 2,6-dichlorobenzaldehyde using KF as fluorinating agent was studied. The kinetics was investigated and the reaction rate constants were obtained under the optimum conditions of n(KF):n(2,6-dichlorobenzaldehyde): n(Ph4PBr):n(acetone-furan crown ether) = 4:1:0.1:0.05 and temperatures of 433 K, 443 K, 453 K and 463 K. The results illustrated the activation energy of the first and the second step is 4.57 × 104 J·mol−1 and 3.53 × 104 J·mol−1, respectively. The pre-exponential factor is 4.50 × 105 h−1 and 1.08 × 104 h−1, respectively. Thus a reliable kinetics data could be obtained for further research. __________ Translated from Chemical Engineering (China), 2007, 35(8): 33–36 [译自: 化学工程]  相似文献   

2.
Dipyridamole [2,6-bis-diethanolamino-4,8-dipiperidinopyrimido-(5,4-d) pyrimidine], a well known platelet aggregation inhibitor, shows powerful hydroxyl radical scavenging activity by inhibiting OH-dependent salicylate and deoxyribose degradation. Steady-state competition kinetics experiments with deoxyribose were carried out to evaluate the second-order rateconstant for the reaction between hydroxyl radical and dipyridamole. OH· radicals were generated either by a Fenton-type reaction or by X-ray irradiation of water solutions. A second-order rate constant k(Dipyridamole+OH·) of 1.72±0.11×1010M−1 s−1 and of 1.54±0.15×1010 M−1 s−1 was measured by Fenton chemistry and by radiation chemistry, respectively. Mannitol was used as an internal standard for hydroxyl radicals in steady-state competition experiments with deoxyribose. A rate constant k(Mannitol+OH·) of 1.58±0.13×109 M−1 s−1 and 1.88±0.14×109 M−1 s−1 was measured in the Fenton model and in the water radiolysis system, respectively. Both these rate constants are in good agreement with the published data obtained by the “deoxyribose assay” and by pulse radiolysis.  相似文献   

3.
Laboratory treatment of soybean oil were carried out at the following conditions: atmospheric pressure in the presence of air or nitrogen at different temperatures ranging from 160 to 250°C for 12 to 72 h. These conditions were used to study geometric isomerization of cis,cis-linoleic and cis,cis,cis-linolenic acid in the presence or in the absence of oxidative degradation reactions. Based on these experiments, a model of consecutive, parallel reactions was developed to describe the reaction steps occurring in the soybean oil during heating at constant temperature. For both cis,cis-linoleic and cis,cis,cis-linolenic acid, the reaction of formation isomers followed a first-order reaction, and the rate constant of isomerization varied according to the Arrhenius law. The isomerization rate constant for linoleic acid was 9.57×10−3±0.50 h−1 in the presence of oxygen and 7.39×10−3±0.39 h−1 in its absence, and the isomerization rate constant for linolenic acid was 1.18×10−1±0.10 h−1 in the presence of oxygen and 0.87×10−1±0.07 h−1 in its absence (all obtained at 250°C).  相似文献   

4.
In a study of stable emulsions of linoleic acid in 0.1M-KH2PO4/Na2HPO4 buffer solutions prepared by sonic vibrations, the influence of linoleic acid on pH was manifested in buffer solutions of pH 8.00 and decreased gradually till it became negligible in pH 4.50. This change in pH values was due to differences in solubility of linoleic acid in the buffer solutions. Ultraviolet spectra of soluble linoleic acid in buffer solutions indicated the presence of conjugated dienes, which increased with the increasing of the pH of the system. Unbuffered aqueous emulsions of linoleic acid had a pH value which ranged between 4.69 and 5.10. Saturated aqueous solutions, obtained by high-speed centrifugation, had concentrations of 15.80 to 16.00 mg. linoleic acid per 100 ml. of D.I. water. From the solubility data and conductivity values of linoleic acid the apparent classic and thermodynamic ionization constants were calculated to be 6.974±0.023×10−6 and 6.905±0.017×10−6 at 0.7°C. and 1.730±0.009×10−5 and 1.689±0.007×10−5 at 25°C., respectively. The result of the chemical interaction of linoleic acid and water is a saturated hydroxy fatty acid. This acid gave a positive test for glycol groups with periodic acid oxidation test and appeared to be a tetrahydroxy compound with the exact structure unknown. Presented at the 51st Annual Meeting, American Oil Chemists' Society at Dallas, Tex., April 4–6, 1960. American Meat Institute Foundation Journal Paper No.204.  相似文献   

5.
Kazuo Mukai  Yuji Okauchi 《Lipids》1989,24(11):936-939
A kinetic study of the reaction between a tocopheroxyl radical and unsaturated fatty acid esters has been undertaken. The rates of allylic hydrogen abstraction from various unsaturated fatty acid esters (ethyl oleate2, ethyl linoleate3, ethyl linolenate4, and ethyl arachidonate5) by the tocopheroxyl radical (5,7-diisopropyltocopheroxyl6) in benzene have been determined spectrophotometrically. The second-order rate constants, k3, obtained are 1.04×10−5 M−1s−1 for2, 1.82×10−2 M−1s−1 for3, 3.84×10−2 M−1s−1 for4, and 4.83×10−2 M−1s−1 for5 at 25.0°C. Thus, the rate constants, kabstr/H, given on an available hydrogen basis are k3/4=2.60×10−6 M−1s−1 for2, k3/2=9.10×10−3 M−1s−1 for3, k3/4=9.60×10−3 M−1s−1 for4, and k3/6=8.05×10−3 M−1s−1 for5. The kabstr/H values obtained for the polyunsaturated fatty acid esters3,4, and5 containing H-atoms activated by two π-electron systems are similar to each other, and are about three orders of magnitude higher than that for the ethyl oleate2 containing H-atoms activated by a single π-system. From these results, it is suggested that the prooxidant effect of α-tocopherol in edible oils and fats may be induced by the above hydrogen abstraction reaction.  相似文献   

6.
The odor detection thresholds of carvacrol (5-isopropyl-2-methyl-phenol), thymol (2-isopropyl-5-methyl-phenol) and p-cymene 2,3-diol (2,3-dihydroxy-4-isopropyl-1-methyl-benzene) in sunflower oil, determined by the three-alternative, forced-choice procedure, were 30.97, 124 and 794.33 mg kg−1, respectively. Sunflower oil containing 13, 70, or 335 mg kg−1 of carvacrol, thymol or p-cymene 2,3-diol, respectively, was judged to be similar (P < 0.01) in taste and odor to its antioxidant-free counterpart. The rate constant of sunflower oil oxidation, measured from the increase in peroxide value during storage at 25 °C, was 9.2 × 10−9 mol kg−1 s−1 while the rate constants were 9.3 × 10−9, 9.8 × 10−9, and 4.3 × 10−9 mol kg−1 s−1 in the presence of 13 mg kg−1 carvacrol, 70 mg kg−1 thymol, and 335 mg kg−1 p-cymene 2,3-diol, respectively. At a level of 335 mg kg−1, p-cymene 2,3-diol did not impart flavor taints and effected a 46.7% reduction in the rate of oxidation of sunflower oil. These findings indicate that the diphenolic p-cymene 2,3-diol could potentially replace synthetic antioxidants and is a valuable addition to the antioxidants used by the food industry in its quest to meet consumer demands for synthetic-additives-free and ‘natural’ foods.  相似文献   

7.
Epoxidation of karanja (Pongamia glabra) oil by H2O2   总被引:1,自引:0,他引:1  
Epoxidation of karanja oil (KO), a nondrying vegetable oil, was carried out with peroxyacetic acid that was generated in situ from aqueous hydrogen peroxide and glacial acetic acid. KO contained 61.65% oleic acid and 18.52% linoleic acid, respectively, and had an iodine value of 89 g/100 g. Unsaturated bonds in the oil were converted to oxirane by epoxidation. Almost complete epoxidation of ethylenic unsaturation was achieved. For example, the iodine value of the oil could be reduced from 89 to 19 by epoxidation at 30°C. The effects of temperature, hydrogen peroxide-to-ethylenic unsaturation ratio, acetic acid-to-ethylenic unsaturation ratio, and stirring speed on the epoxidation rate and on oxirane ring stability were studied. The rate constant and activation energy for epoxidation of KO were 10−6 L·mol−1·s−1 and 14.9 kcal·mol−1, respectively. Enthalpy, entropy, and free energy of activation were 14.2 kcal·mol−1, −51.2 cal·mol−1·K−1, and 31.1 kcal·mol−1, respectively. The present study revealed that epoxides can be developed from locally available natural renewable resources such as KO.  相似文献   

8.
Chia seeds as a source of natural lipid antioxidants   总被引:8,自引:0,他引:8  
Chia (Salvia sp) seeds were investigated as a source of natural lipid antioxidants. Methanolic and aqueous extracts of defatted chia seeds possessed potent antioxidant activity. Analysis of 2 batches of chia-seed oils demonstrated marked difference in the fatty acid composition of the oils. In both batches, the oils had high concentrations of polyunsaturated fatty acids. The major antioxidant activity in the nonhydrolyzed extract was caused by flavonol glycosides, chlorogenic acid (7.1 × 10−4 mol/kg of seed) and caffeic acid (6.6 × 10−3 m/kg). Major antioxidants of the hydrolyzed extracts were flavonol aglycones/kaempferol (1.1 × 10−3 m/kg), quercetin (2.0 × 10−4 m/kg) and myricetin (3.1 × 10−3 m/kg); and caffeic acid (1.35 × 10−2 m/kg). Two methods were used to measure antioxidant activities. Both were based on measuring bleaching ofβ-carotene in the coupled oxidation ofβ-carotene and linoleic acid in the presence of added antioxidants.  相似文献   

9.
Summary Influence of some aromatic amino acids (histidine, phenylalanine and tryptophan) on the swelling behavior of acrylamide/maleic acid hydrogel (AAm/MA) prepared by γ-radiation was investigated. Swelling tests of AAm/MA hydrogel were made in buffer solutions and amino acid solutions at various pH at 37°C. The pH values are ionization of α-carboxyl groups (pK'1), α-amino groups (pK'2) and, isoelectric points (pI) of amino acids. The swelling of AAm/MA hydrogel increased when pH values of solutions were increased. The value of equilibrium swelling of AAm/MA hydrogel was 1035% at pH 10 buffer, while it was 880% at pH 2 buffer. The values of equilibrium swelling of AAm/MA hydrogel in phenylalanine, tryptophan and histidine solutions varied among 1130–1245% at pH 10, while they were among 790–975% at pH 2. The rate constant of swelling, diffusional exponent, network parameter and, diffusion and intrinsic diffusion coefficient were calculated by swelling kinetics. Diffusion of the penetrants into the hydrogel was found to be non-Fickian character. The diffusion coefficients of the hydrogel varied between 3.33×10−6– 7.71×10−6 cm 2s−1, while the intrinsic diffusion coefficients waried between 4.03×10−6– 8.48×10−6 cm 2s−1. Received: 22 December 1997/Revised version: 3 March 1998/Accepted: 5 March 1998  相似文献   

10.
Electrooxidation of glutathione (GSH) was studied at the surface of 2,7-bis (ferrocenyl ethyl) fluoren-9-one modified carbon paste electrode (2,7-BFEFMCPE). Cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry (DPV) were used to investigate the suitability of this ferrocene derivative as a mediator for the electrocatalytic oxidation of GSH in aqueous solutions with various pH. Results showed that pH 7.00 is the most suitable pH for this purpose. At the optimum pH, the oxidation of GSH at the surface of this modified electrode occurs at a potential of about 0.410 V versus Ag|AgCl|KClsat. The kinetic parameters such as electron transfer coefficient, α = 0.61, and rate constant for the chemical reaction between GSH and redox site in 2,7-BFEFMCPE, k h = 1.73 × 103 cm3 mol−1 s−1, were also determined using electrochemical approaches. Also, the apparent diffusion coefficient, D app, for GSH was found to be 5.0 × 10−5 cm2 s−1 in aqueous buffered solution. The electrocatalytic oxidation peak current of GSH showed a linear dependence on the glutathione concentration, and linear calibration curves were obtained in the ranges of 5.2 × 10−5 M to 4.1 × 10−3 M and 9.2 × 10−7 M to 1.1 × 10−5 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.4 × 10−5 M and 5.1 × 10−7 M for the CV and DPV methods, respectively. This method was also examined as a selective, simple, and precise new method for voltammetric determination of GSH in real sample such as hemolysed erythrocyte.  相似文献   

11.
The densities ofn-alkyl chlorides from pentyl chloride to hexadecyl chloride were determined at temperatures between 15–80°C at 5°C intervals. The densities increase linearly with temperature and chainlength. A four-constant equation, V=n/(−3.6640 × 10−5 T+0.07151)+1/(−5.6526 × 10−5 T+0.04243), was formulated. This formula accurately predicted the molal volume and, hence, the density for all then-alkyl chlorides at any temperature within the range.  相似文献   

12.
The effects of 0, 1.0 × 10”−5, 2.5 × 10−5, and 5.0 × 10−5 M β-apo-8'-carotenal, β-carotene, and canthaxanthin on the photooxidation of soybean oil in methylene chloride containing 3.3 × 10−9 M chlorophyll b were studied by measuring peroxide values and conjugated diene content. β-Apo-8'-carotenal, β-carotene, and canthaxanthin contain 10,11, and 13 conjugated double bonds, respectively. The peroxide values and conjugated diene contents of oils containing the carotenoids were significantly lower (P<0.05) than those of control oil containing no carotenoid. As the number of conjugated double bonds of the carotenoids increased, the peroxide values of soybean oils decreased significantly (P<0.05). The quenching mechanisms and kinetics of the carotenoids in the photosensitized oxidation of soybean oil were studied by measuring peroxide values. The steady-state kinetics study showed that carotenoids quenched singlet oxygen to reduce chlorophyll-sensitized photooxidation of soybean oil. The singlet-oxygen quenching rate constants ofβ- apo-8'-carotenal, β-carotene, and canthaxanthin were 3.06 × 109, 4.60 × 109, and 1.12 × 1010 M−1sec−1, respectively.  相似文献   

13.
A kinetic study of the prooxidant effect of α-tocopherol was performed. The rates of allylic hydrogen abstraction from various unsaturated fatty acid esters (ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) by α-tocopheroxyl radical in toluene were determined, using a double-mixing stopped-flow spectrophotometer. The second-order rate constants (k p) obtained are <1 × 10−2 M−1 s−1 for 1, 1.90 × 10−2 M−1 s−1 for 2, 8.33 × 10−2 M−1 s−1 for 3, 1.92 × 10−1 M−1 s−1 for 4, and 2.43 × 10−1 M−1 s−1 for 5 at 25.0 °C. Fatty acid esters 3, 4, and 5 contain two, four, and six –CH2– hydrogen atoms activated by two π-electron systems (–C=C–CH2–C=C–). On the other hand, fatty acid ester 2 has four –CH2– hydrogen atoms activated by a single π-electron system (–CH2–C=C–CH2–). Thus, the rate constants, k abstr/H, given on an available hydrogen basis are k p/4 = 4.75 × 10−3 M−1 s−1 for 2, k p/2 = 4.16 × 10−2 M−1 s−1 for 3, k p/4 = 4.79 × 10−2 M−1 s−1 for 4, and k p/6 = 4.05 × 10−2 M−1 s−1 for 5. The k abstr/H values obtained for 3, 4, and 5 are similar to each other, and are by about one order of magnitude higher than that for 2. From these results, it is suggested that the prooxidant effect of α-tocopherol in edible oils, fats, and low-density lipoproteins may be induced by the above hydrogen abstraction reaction.  相似文献   

14.
The transport of palmitic acid (PA) across planar lipid bilayer membranes was measured using a high specific activity [14C]palmitate as tracer for PA. An all-glass trans chamber was employed in order to minimize adsorbance of PA onto the surface. Electrically neutral (diphytanoyl phosphatidylcholine) and charged (Azolectin) planar bilayers were maintained at open electric circuit. We found a permeability to PA of (8.8±1.9)×10−6 cm s−1 (n=15) in neutral and of (10.3±2.2)×10−6 cm s−1 (n=5) in charged bilayers. These values fall within the order of magnitude of those calculated from desorption constants of PA in different vesicular systems. Differences between data obtained from planar and vesicular systems are discussed in terms of the role of solvent, radius of curvature, and pH changes.  相似文献   

15.
Evidence is presented that cardiolipin, a naturally occurring phospholipid, inhibits the aggregatory effect of platelet-activating factor (paf) on rabbit plateletsin vitro. Bovine heart cardiolipin was shown to inhibit the aggregation of washed rabbit platelets induced by 1×10−10 M and 2×10−10 M paf with IC50 values (doses for half-maximal inhibition) of 8.4±0.8×10−7 M and 2.6±0.6×10−6 M, respectively. Phosphonocardiolipin was also able to inhibit platelet aggregation induced by 1× 10−10 M paf with an IC50 value of 3±1×10−7M. Both compounds, in concentrations up to 1×10−5 M, were unable to aggregate washed rabbit platelets and failed to inhibit the aggregation induced by 0.9 and 1.8 μM adenosine diphosphate or 0.2–1.0 μM arrchidonic acid. By contrast, the acetylated derivative of cardiolipin exerted an aggregatory effect on aspirin-treated rabbit platelets in the presence of creatine phosphate/creatine phosphokinase. This aggregation was inhibited by the specific paf antagonists BN 52021 and WEB 2086. Also, platelets treated with acetyl-cardiolipin were insensitive to the aggregatory effect of paf. Phosphatidic acid, phosphatidylglycerol,bis(dipalmitoylglycero)phosphate and their phosphono analogues were totally inactive. Similar data were obtained when platelet-rich plasma was used instead of washed rabbit platelets. Our results support the hypothesis that the effect of cardiolipin is mediated through specific paf receptors that act on the rabbit platelet membrane.  相似文献   

16.
The electrocatalytic behavior of uric acid has been investigated with a glassy carbon electrode modified with p-aminobenzene sulfonic acid through electrochemical polymerization. This resulting electrode shows an excellent electrocatalytic response to uric acid and ascorbic acid, with a peak-to-peak separation of 0.267 V in a 0.1 mol L−1 phosphate buffer solution (PBS) at pH 7.0. These results indicate that the proposed electrode can eliminate the serious interference of ascorbic acid, which coexists with uric acid in body fluids. Differential pulse voltammetry (DPV) was used for detecting uric acid with selectivity and sensitivity. The anodic peak current of uric acid was proportional to its concentration in the range of 1.2 × 10−7–8.0 × 10−4 mol L−1, with a detection limit of 4.0 × 10−8 mol L−1. The proposed method has been applied with satisfactory results to the determination of uric acid in human urine without any pretreatment.  相似文献   

17.
The kinetic model of asymmetric reduction of 3-oxo-3-phenylpropionic acid ethyl ester using Saccharomyces cerevisiae CGMCC No.2266 with 10% glucose as co-substrate to realize the regeneration of NADPH was established. The effect factors on reduction, the type and the content of co-substrate and coenzyme, and the changes of the substrate and product content vs. time during the reaction process were investigated. The results indicate that 10% glucose can increase the reaction conversion from 23.0% to 98.4% and NADPH is reducer. The reduction process conforms with sequence mechanisms. The model parameters are as follows: v m =5.0×10−4 mol·L−1·h−1, k1=1.5×10−6 mol·L−1·h−1, k2=3.0×10−3 mol·L−1·h−1. The kinetic model is in good agreement with the experimental data.  相似文献   

18.
An expeditious colorimetric methodology for the determination of the deoxycholic acid (DCA) and of the ursodeoxycholic acid (UDCA) in pharmaceutical formulations is reported. The method is based on their competitive complexation reaction with a color indicator to form β-cyclodextrin-inclusion complexes. Several pH color indicators were tested, but phenolphthalein (PHP) showed the best interaction with the β-cyclodextrin (β-CD) with an inclusion yield higher than 95%. The best concentrations of β-cyclodextrin to form inclusion complexes were 1.24 × 10−3 and 6.2 × 10−4 M at pH 9.5 and 10.5. Statistical analysis of the results showed that the pH had a significant effect on the DCA determination and that high β-CD-PHP inclusion complex concentrations had a significant negative effect on the UDCA determination (p < 0.05). The limit of detection and limit of quantification were 3.94 × 10−5 and 1.31 × 10−4 M for DCA (range: 6.1 × 10−6–3.13 × 10−3 M), 4.08 × 10−5  and 1.36 × 10−4 M for UDCA (range: 6.05 × 10−6–3.88 × 10−4 M). This simple and cheap method showed high stability and feasible instrumentation.  相似文献   

19.
Oil was extracted from soybeans, degummed, alkalirefined and bleached. The oil was heated at 160, 180, 200, 220 and 240°C for up to 156 h. Fatty acid methyl esters were prepared by boron trifluoride-catalyzed transesterification. Gas-liquid chromatography with a cyanopropyl CPSil88 column was used to separate and quantitate fatty acid methyl esters. Fatty acids were identified by comparison of retention times with standards and were calculated as area % and mg/g oil based on 17:0 internal standard. The rates of 18:3ω3 loss and 18:3 Δ9-cis, Δ12-cis, Δ15-trans (18:3c,c,t) formation were determined, and the activation energies were calculated from Arrhenius plots. Freshly prepared soy oil had 10.1% 18:3ω3 and no detectable 18:3c,c,t. Loss of 18:3ω3 followed apparent first-order kinetics. The first-order rate constants ranged from .0018±.00014 min−1 at 160°C to .083±.0033 min−1 at 240°C. The formation of 18:3c,c,t did not follow simple kinetics, and initial rates were estimated. The initial rates (mg per g oil per h) of 18:3c,c,t formation ranged from 0.0031±0.0006 at 160°C to 2.4±.24 at 240°C. The Arrhenius activation energy for 18:3ω3 loss was 82.1±7.2 kJ mol−1. The apparent Arrhenius activation energy for 18:3c,c,t formation was 146.0±13.0 kJ mol−1. The results indicate that small differences in heating temperature can have a profound affect on 18:3c,c,t formation. Selection of appropriate deodorization conditions could limit the amount of 18:3c,c,t produced.  相似文献   

20.
Dichlorodicarbonylbis (triphenylphosphine) ruthenium (II), RuCl2 (CO)2 (PPh3)2, was investigated as a catalyst for edible oil hydrogenation in a preliminary screening of potential catalysts for producing partially hydrogenated fats with lowtrans-isomer content. Refined, bleached and deodorized canola oil was hydrogenated using 1.77 × 10−5 − 6.64 × 10−4 mol/kg-oil of ruthenium catalyst equivalent to 1.79 × 10−4 − 6.71 × 10−3 wt% Ru. The effects of temperature (50–180 C) and pressure (50–750 psig) on reaction rate,trans-isomer content and fatty acid composition were examined. The activities of RuCl2 (CO)2 (PPh3)2 and nickel (Nysel HK-4 and AOCS standard nickel catalyst) were compared on a molar basis. At 4.40 × 10−4 mol/kg-oil (0.0026 wt/Ni or 0.0044 wt% Ru), 140 C and 50 psig, the nickel catalysts were completely inactive, but the ruthenium catalyst produced an IV drop of 40 units in 60 min. At 110 C, 750 psig and 1.34 × 10−4 mol/kg-oil (1.35 × 10−3 wt% Ru), a hydrogenation rate of 0.89 ΔIV/min and a maximumtrans-isomer content of 10.4% (IV=45.0) was obtained with the ruthenium catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号